
COMP 210, Spring 2002
Lecture 9: Lists of Mixed Type & Introduction to Family Trees

Reminders:
• Exam will be 2/13/2002 in class
• Review session will be 7:30pm Monday 2/11/2002
.

An Issue of Taste
In lab, you talked about lists of symbols and numbers. I won’t belabor the
details on how to declare, document, and use these mixed-element lists.
However, there are some matters of taste that we should work through.

Programming is part science (the COMP 210 part) and part art (the part built
on taste, experience, and all those other "soft" terms). Consider our list-of-
nums-and-syms.

;; a list-of-nums-and-syms is one of
;; – empty, or
;; – (cons S lons)
;; where S is a symbol and lons is a list-of-nums-and-syms, or
;; – (cons N lons)
;; where N is a number and lons is a list-of-nums-and-syms

We could also have written it as

;; a NumSym is either
;; - a number, or
;; - a symbol

;; a list-of-NumSyms is either
;; - empty, or
;; - (cons f r)
;; where f is a NumSym and r is a list-of-NumSyms

The choice between these two representations depends on the underlying
problem. If the numbers and symbols are just grouped together for
convenience, then the mixed-list (list-of-nums-and-syms) is probably
preferred. If the numbers and symbols are variations on some particular
object, then defining a NumSym and having a list of NumSyms probably
makes more sense. Some other examples may help convey a sense of this
tradeoff …

Another example
Back to pizza, with an emphasis on supply-side pizzanomics. We might
represent a pizza as a list of toppings.

;; a list-of-toppings is one of
;; - empty, or
;; - (cons 'cheese a-lot), where a-lot is a list-of-toppings, or
;; - (cons 'pepperoni a-lot), where a-lot is a list-of-toppings, or
;; - (cons 'spinach a-lot), where a-lot is a list-of-toppings.
;;
;; we will use the built-in list constructor

Here, we can easily see how to add new toppings. If we were developing a
program that took a list-of-toppings and produced a price (for example), this
structure might make sense because it leads to a template that breaks each
distinct topping out with its own clause in a cond expression.

The alternative is to define a new kind of information, a topping, and use a
list of these toppings.

;; a topping is one of
;; – 'cheese, or
;; – 'pepperoni, or
;; – 'spinach

;; a list-of-toppings is one of
;; – empty, or
;; – (cons f r)
;; where f is a topping and r is a list-of-toppings

Which of these data definitions is preferred? This is a matter of taste,
experience–-in short, what Knuth called "The Art of Computer
Programming." As you write more programs, larger programs, programs
that are used by other people, and, finally, programs that are modified by
other people, you will develop insight into this issue. [In fact, programmers
with good taste can disagree over such fundamental issues.]

For COMP 210, here is a general rule to follow:

If there is a meaningful relationship between the two cases, create a
new kind of data to represent them–-for example, with pizza toppings
and a list of pizza toppings. If there is no inherent relationship, as
with numbers and symbols, make the alternatives be explicit cases in
the list. NumSym is artificial; toppings is not.

One Final Example
Consider building a personnel system for Rice. It might contain data items
for faculty, for staff, for graduate students, and for undergraduates. In each
category, the set of information that might be needed will be different. For
example:

• Undergraduates have a college, a matriculation date, and a graduation
date.

• Graduate students have a department, a degree program (MA, MS,
MBA, Ph.D.) and an undergraduate school.

• Staff have a starting date, an evaluator’s name, a date for the end of
their probationary period, and an office.

• Faculty have a department, a rank (like Assistant, Associate, or Full),
a school, and a tenure date.

The list of all personnel would include all four categories–-faculty, staff,
graduate student, and undergraduate. This would argue for a list with four
kinds of structure plus empty, rather than defining a “person” as one of the
four categories and keeping a list-of-person.

Working with Mixed Data
By now you should be comfortable working with lists and with recursion.
This gives us the foundation we need to start designing programs that
operate over more complex data structures. Today, we'll start by working
with family trees.

This family tree depicts three generations of a family. Arrows run from
child to parent, so Mary's parents are Ann and Joe, Ann's parents are Susan
and Tom, and Pat and Mike are Ann's siblings.

How might we write a data definition that allows us to represent these family
trees in Scheme? (Recall that we used a list to represent recipes.) This is
where I think Computer Science gets fun–-devising new and effective ways
to represent complex kinds of information.

Mike

Susan

Pat

Tom

Mary

Ann Joe

;; a ftn (for family-tree node) is either
;; – a symbol, or
;; – (make-ftn name father mother)
;; where name is a symbol and father & mother are both ftns
(define-struct ftn (name mother father))

;; Examples
'Mary
(make-ftn 'Ann 'Susan 'Tom)
(make-ftn 'Mary (make-ftn 'Ann 'Susan 'Tom) 'Joe)
(make-ftn 'Pat 'Susan 'Tom)
(make-ftn 'Mike 'Susan 'Tom)

Designing Programs for FTNs
What would the template for this ftn contain?

(define (f … a-ftn …)
 (cond
 [(symbol=? a-ftn) …]
 [(ftn? a-ftn) …

(ftn-name a-ftn) …
(f (ftn-mother a-ftn)) …
(f (ftn-father a-ftn)) …]

))

Let's write a program in-family? that consumes an ftn and a symbol and
produces a boolean that indicates whether or not a person with that name is
in the family tree.

;; in-family?: ftn symbol � boolean
;; Purpose: determine if the symbol is in the ftn
;; return true if found and false otherwise
(define (in-family? a-ftn kin) …)

Next, we can copy the template over and fill it in.

(define (in-family? a-ftn name)
 (cond
 [(symbol=? a-ftn) (symbol=? a-ftn name)]
 [(ftn? a-ftn)

 (or
(symbol=? (ftn-name a-ftn) name)
(in-family? (ftn-mother a-ftn) name)
(in-family? (ftn-father a-ftn) name)
)]))

More in the next lecture.

We can use or to
check all three
possibilities in a
single function
call, producing the
boolean or of the
answers.

