
COMP 210, Spring 2002
Lecture 7: Programming with Lists, Again

Reminders:
• Homework assignment 3 available today, due next Wednesday
• Read Sections 9 through 11

Review
1. Learned to write simple programs based on algebra over real numbers
2. Learned to organize data into aggregate structures–a process we call

working with compound data in COMP 210
3. Learned to provide meta-organization in the form of lists–a tool for

handling arbitrary amounts of data.

When we have a problem with a fixed amount of data, we can treat it as
compound data, unless the amount is so large that manipulating the name
space becomes a problem. [As in (define mechanics (repair0 repair1 repair2
… repair100)]

Through all of this, you should be reading the book. It develops a
systematic methodology for building these programs that I can only
approximate in class. We have built up a six-step design methodology for
developing these small programs. That methodology should carry you
forward for the rest of COMP 210 and for much of your programming
experience in the future.

Today, we'll go back to lists, writing programs with lists, and look at other
applications of the idea of a list.

Bubba-serves? one more time…

;; a list-of-symbol is either
;; – empty, or
;; – (make-los f r)
;; where f is a symbol and r is a list-of-symbol
(define los (f r))

;; Template for list-of-symbols
;; (define (… a-los …)
;; (cond
;; [(empty? a-los) …]
;; [(los? a-los) … (los-f a-los)
;; … (los-r a-los) …]

The final case in the cond has become more complicated. We write down
the selector expressions for each of the pieces of a los (and apply them to the
parameter a-los.

Finally, we can fill in the entire program:
;; Bubba-served? : list-of-symbol -> bool
;; Purpose: return true if Bubba is in the list
(define (Bubba-served? a-los)
 (cond
 [(empty? a-los) false]
 [(los? a-los)

(cond
 [(symbol=? (los-f a-los) 'Bubba) true]
 [else (Bubba-served? (los-r a-los))])

]))

Notice that the case for a los in the cond has two cases. These cases arise
from the two cases in the problem statement (not in the data definition).

• If the mechanic is 'Bubba, we're done (true or false = true)
• If the mechanic is not 'Bubba, we need to look farther down the list (and

we know we can because we are not in the clause of the outer cond for
empty). To accomplish this, we call Bubba-served? again to reflect the
recursion in the data definition.

Test on empty, on (list 'Bess 'Mike 'Susan 'Bubba), on (list 'Fred 'Jane
'Felix)

Another example

;; count-services: list-of-symbol -> number
;; Purpose: count number of times this plane has been serviced
(define (count-services a-los)
 (cond
 [(empty? a-los) 0]
 [(los? a-los) (add1 (count-services (rest a-los)))]
))

This is the first mention of
recursion in COMP 210

This example ignores (first a-los) because it doesn't care about the contents
of (first a-los). It simply counts any maintenance record, rather than looking
for specific mechanics.

Termination
Why do these programs, Bubba-served? and count-services ever halt?
Most computer programs are of interest only if they meet two conditions:
they halt and they return the correct answer. In later classes, like COMP
280, you will learn to reason more formally about termination. In COMP
210, the template for data structures like list-of-symbol creates an implicit
argument for termination.

Look at count-services. When it is invoked, it considers two possible cases.
If the list is empty, it halts and returns a zero. If the list is non-empty, it
recurs on (rest a-los) to find the number of services in the remaining part of
the list, then adds one to that count and returns the result. The recursion
passes (rest a-los) to count-services. What can we say about (rest a-los)
relative to a-los? <It must be smaller than a-los>

If every recursive call to count-services recurs on a subset of the list that it
receives, then the argument to count-services must eventually be empty.
The only way this cannot be true is if the list has infinite length. So far, we
don’t have the tools to build an infinite list, so this cannot arise.

<If time is tight, skip directly to next discussion>

Putting Lists to Other Uses
Of course, JetSet Airlines doesn't want a system where they must type the
name of each plane into DrScheme. If they succeed, they could end up with
hundreds or thousands of planes. Thus, they need to organize the set of
planes. To do this, we can create a list of all their planes.

;; a list-of-planes is either
;; – empty, or
;; – (cons first rest)
;; where first is a plane and rest is a list-of-plane
;; a plane is a
;; (make-plane tailnum kind miles mechanic)
;; where tailnum is a symbol, kind is a brand, miles is a number, and
;; mechanic is a list of symbols

;; example data
;;
;; (define brand1 (make-brand `DC-10 550 282 15000))
;; (define brand2 (make-brand `MD-80 505 141 10000))
;; (define brand3 (make-brand `ATR-72 300 46 5000))
;; and
;; (define N1701 (make-plane `N1701 brand1 0 empty))

 ;; (define N3217 (make-plane ‘N3217 brand3 0 empty))
;; …
;; Now, the list of planes
;; (define LOP
;; (cons N1701
;; (cons N3217
;; (cons N1211
;; (cons N9510 empty)))))
;;

Write a program that consumes a list-of-planes and produces a list
containing all the planes that are DC-10s.

;; just-dc10s: list-of-planes -> list-of-planes
;; Purpose: builds a new list that contains the subset of 'a-lop' that are 'DC-
10s
;; (define (just-dc10s a-lop) …)

LOS versus LIST
In the example, we defined our own list constructor, named los. The data
definition for los shows that it is either empty or a pair, where the second
element of the pair is a los.
This construct is so fundamental to Scheme, and so heavily used in Scheme,
that a version of it is built into the language.

;; a list is either
;; – empty, or
;; – (cons first rest)
;; where first is an arbitrary Scheme object and rest is a list

cons, first , and rest are built-in Scheme functions. I've always remembered
the name cons as an abbreviation for list constructor.

cons ≡ make-los (cons checks its 2nd argument to make sure
it’s a list)

first ≡ los-first
rest ≡ los-rest

Design Methodology
Let's review the design methodology for programs that use lists (and other
recursive data definitions). We'll use Bubba-serve? as an example, and
finish writing the function.

1. Data analysis – determine how many pieces of data describe interesting
aspects of a typical object mentioned in the problem statement; add a data
definitions for each kind ("class") of object in the problem

For Bubba-serve? we need a structure that can hold zero or more names

;; a list-of-symbols is either
;; – empty, or
;; – (cons f r)
;; where f is a symbol and r is a list-of-symbols
;;
;; Using the built-in list construct, we don't need the define-struct

;; Examples

empty

(cons 'Bess (cons 'Mike (cons 'Susan (cons 'Bubba empty))))

2. Contract, purpose, header
;; Bubba-serve? : list-of-symbols -> boolean
;; Purpose: determine whether 'Bubba is on the "mechanic" list
;; (define (Bubba-serve? a-los) …)

3. Examples
;; (Bubba-serve? empty) = false
;; (Bubba-serve? (cons 'Bess

(cons 'Mike
(cons 'Susan

(cons 'Bubba empty))))) = true
;; (Bubba-serve? (cons 'Fred (cons 'Jane (cons 'Felix empty)))) =
false

4. Template – for any parameter that is a compound object, write down the
selector expressions (access functions?). Template is problem-
independent outline for the code body.

I always document the use of list and add a
note like this so that it is clear what I have
done. I expect you to do the same

;; (define (… a-los …)
;; (cond
;; [(empty? a-los) …]
;; [(list? a-los) … (f a-los)
;; … (r a-los) …]

5. Write the body (using the template)

;; Bubba-served? : list-of-symbol -> bool
;; Purpose: return true if Bubba is in the list
(define (Bubba-served? a-los)
 (cond
 [(empty? a-los) false]
 [(list? a-los)

 (cond
 [(symbol=? (f a-los) 'Bubba) true]
 [else (Bubba-served? (lr a-los))])

]))

As you write the body, consider each clause in the cond separately. You
don't need to think about the list? clause when your are writing the
empty? clause.

6. Test the program (using the examples from step 3)

