
COMP 210, Spring 2002
Lecture 6: Lists, more lists, & even more lists

Reminders:
•  Homework assignment  2 is due Wednesday
•  Today we start material that falls in Sections 9 through 11

Review
Last class, we built a more complex example with define-struct.  We talked
about keeping records for an airline.  We defined structures for a brand and
for a plane.

;; a brand is structure
;;     (make-brand  type speed seats service)
;; where type is a symbol and speed, seats, and service are numbers
(define-struct brand (type speed seats service))

We wrote a program max-dist that consumed a brand and a number of hours
and produced the maximum distance that a plane of that brand can travel in
the given number of hours.

Relating Data from Different Kinds of Structures
In addition to facts about models of plane, the airline also needs to keep
information about individual planes.  Again, the structure of this information
should be based on the kinds of questions that programs will need to ask.
Clearly, the airline needs to track mileage and service on a plane-by-plane
basis (and if that is not clear, there is a little matter of federal regulation).

Let’s define a plane

;; a plane is a structure
;;    (make-plane tailnum kind  miles  mechanic)
;; where tailnum is a symbol, kind is a brand, miles is a number,
;; and mechanic is a symbol
(define-struct plane (tailnum kind miles mechanic))

Here, tailnum is the plane’s identifying registration number, kind is a brand,
miles is the number of miles flown since the plane was serviced, and
mechanic is the name of the person who serviced the plan.

Example Data:

(define N1701 (make-plane `N1701 brand1 10000 ‘Bubba))
(define N3217 (make-plane ‘N3217 brand3 6500 ‘Jane))

These definitions create objects in the Scheme workspace that we can use as
test data in our programs.



Working With Complex Data
Let’s write a program service that JetSet airlines can use when a mechanic
works on a plane.  Service should consume a plane and a mechanic’s name,
and return a new plane that reflects the service.

;; service: plane symbol -> plane
;; Purpose: update a plane’s record to reflect service
(define (service a-plane a-mechanic) … )

Example:
(service N1701 ‘Fred) � (make-plane ‘N1701 brand1 10000 `Fred)

The template:

(define ( … a-plane …)
    ( … (plane-tailnum a-plane) …

(plane-kind a-plane) ….
(plane-miles a-plane) ….
(plane-mechanic a-plane) … ))

To write the body of service, we use the relevant parts of the template and
throw the rest away (or erase it).  Combining the header and the template,
we get something like:

(define (service a-plane a-mechanic)
     ( … (plane-tailnum a-plane) …

(plane-kind a-plane) ….
(plane-miles a-plane) ….
(plane-mechanic a-plane) … ))

Going the next step, we fill in
(define (service a-plane a-mechanic)
     (make-plane

(plane-tailnum a-plane)
(plane-kind a-plane)
0
a-mechanic ))

A More Complex Program
Last class, you developed a program needs-service? that consumes a brand
and a number and returns a Boolean.  Can we write a program bring-it-in?
that consumes a plane and produces a Boolean, where the result is true if
and only if the plane needs service?  Clearly it must work with both plane

This is a zero (for miles)



and brand.  If we reuse needs-service?, then we can formulate bring-it-in?
as follows:

; bring-it-in?: plane � boolean
; purpose: determine if a specific plane needs to be serviced
(define (bring-it-in?  a-plane)

      (needs-service? (plane-brand a-plane) (plane-miles a-plane))

This example shows us something about the design methodology. We
developed it as two programs–-one that deals with planes and one that deals
with brands.  We used the template for plane when we developed bring-it-
in? and the template for brand when we developed needs-service?

This will, in fact, become a design principle. When a problem involves
working with several distinct structures–-several kinds of information–-we
should think of it as several distinct, smaller problems.  To the extent
possible (and in COMP 210, it should always be possible), we should
encapsulate our knowledge of structures in this way.

As a principle in program design, this goes by many names: information
hiding, abstraction, or encapsulation.  This notion will appear again and
again in your study of programming, your study of software systems, and
your study of discrete mathematics.

If the program uses several distinct structures, we will create several distinct
templates.  We won't combine them into a single template, for two reasons.
First, we don't want any one function to become too complex.  Second, as
we develop more complex programming patterns, we will reach a point
where using a single function becomes so complex that we should avoid it at
almost any cost.

Notice that this is different than the example from Lab.  In the lab, the
structure was the union of two ways of representing a point in space (one
kind of information, two representations): a Cartesian coordinate and a polar
coordinate.  Thus, the template had a cond that allowed the program to
handle the two structures in appropriate manners.
In bring-it-in?, we have two related structures that store fundamentally
different kinds of information.  Brand represents generic information about a
type of aircraft, while plane represents information about a specific plane.
Each plane is an instance of a brand, but they are not variants of each other.



Tying Together Related Pieces of Information (into lists)
The most artificial aspect of the programming that we have done to date is
the form that the input takes.  As many of you have observed (publicly or
privately), there is little point in writing a three-line program to pick the
mileage out of a make-brand and test it against a single number.  Typing
the make-brand takes more effort than comparing the two numbers.  Today,
we are going to talk about the way that Scheme programs tie together related
pieces of information.  We will be able (next class) to use this mechanism to
construct complex and persistent sets of input data.

Going back to JetSet Airlines, we know that the FAA actually requires
JetSet Airlines to keep distinct records for every time a mechanic works on a
plane.  To keep these records, we can replace the symbol for mechanic with
a list of mechanics names.  [Later, we can expand these into more complex
records for each service action.]

An example list might be <Eddie, Mike, Patty, Bubba>

To turn this into a Scheme data structure, we need a little more formality.
What's the shortest list you can envision?  What about the degenerate case of
an empty list?  In Scheme, we write empty to represent the empty list.  What
about more complex lists, like the one we just wrote?   What about <Fred,
Jane, Felix>?  Is that a list?

What relationship do these have in common?  A list, it seems, consists of a
name at the top (the first part), and everything that follows it (the rest).  As
long as we let the definition of a list include empty, we can write down a
struct that captures this notion:

(define-struct lst (f r))

We can use this struct  to make some examples:

;; a list-of-symbol is either
;; – empty, or
;; – (make-los  f  r)
;; where f is a symbol and r is a list-of-symbol
(define los  (f r))

;; examples of los
empty

(define OneList
    (make-lst 'Eddie
        (make-lst 'Mike



            (make-lst 'Patty
    (make-lst 'Bubba empty) ) ) ) )

(define AnotherList
     (make-lst  'Fred
          (make-lst  'Jane
               (make-lst  'Felix  empty) ) )

How would we get Eddie out of OneList? (lst-first OneList)
What about Mike? (lst-first ( lst-rest OneList) )
What about Patty? (lst-first (lst-rest (lst-rest OneList) ) )

Let's write a short program using lists:

Write a program, Bubba-served? that conumes a list-of-symbols that
represents the mechanics who have serviced a plane, and returns true if the
list contains 'Bubba

;; Bubba-served?:  list-of-symbol -> boolean
;; Purpose: return true if Bubba's name occurs in the list
;; (define (Bubba-served? a-los) … )

;; Test data
(Bubba-served?  empty ) = false
(Bubba-served?  OneList) = true
(Bubba-served?  AnotherList) = false

This lecture fell apart at this point.  I mis-wrote the contract for Bubba-served?
by having it take a plane rather than a-los.  This destroyed the example.
Fortunately, we were only five minutes from the end of class, so I gave up and
dismissed class.  We will revisit this example in Lecture 7 and get it right (I
hope).



;; Template Two cases in a cond because the
;; (define (…   a-los … ) data definition has two clauses.
;;    (cond 
;; [ … ]
;; [ … ] ))

What questions do we ask in the clauses of the cond?  To detect empty,
Scheme provides an operator empty? – we use that in the first clause.  When
Dr. Scheme executes a define-struct, it (also) creates a function to test for
an instance of the defined structure.  For (define-struct lst   (first  rest) ), it
creates the function lst?  – we can use that one in the second clause.

;; Template
;; Bubba-served? :  list-of-symbol -> bool
;; Purpose: return true if Bubba is in the list
;; (define (Bubba-served? … a-los …)
;;      (cond
;;          [(empty? a-los) … ]
;;          [(los? a-los)  …  (los-f a-los)
;; … (Bubba-served? (los-r  a-los)) … ]

The recursive call reflects the recursion in the data definition.  Finally, we
can fill in the entire program:

;; Bubba-served? :  list-of-symbol -> bool
;; Purpose: return true if Bubba is in the list
(define (Bubba-served? a-los)
     (cond
        [(empty? a-los)   false ]
        [(los? a-los)

(cond
     [(symbol=? (los-f  a-los) 'Bubba)  true ]
     [ else (Bubba-served? (los-r  a-los))] )

      ]))

Next class, we'll try this out on the test data and review how we got here.


