
COMP 210, Spring 2002

Lecture 5: Adding More Structure (JetSet Air)

Reminders:

• Sections 6 & 7 in the book

Review

Last class, we:

1. Introduced symbols and built a couple of interesting programs, even
though almost no interesting operators work on symbols. We discussed
the fact that the set of symbols is not ordered, since neither < nor >
operate on a symbol. The set of symbols is infinite, but lacks the formal,
recursive structure of the natural numbers.

2. Worked too many programs using cond and hand evaluated a number of
them.

2. Introduced the Scheme mechanism for defining aggregate
structures—new kinds of informaton: define-struct. Define-struct
creates a formal definition for the aggregate, along with a set of auxiliary
programs, including a constructor and a set of selectors (or access
programs).

Segue

Our example of the class information system is rather limited—after all, how
many interesting things can we say about the COMP 210 staff. Today, lets
move to another information domain—records for a small airline.

JetSet Air

JetSet airlines operates three different kinds of planes in its fleet: DC-10s,
MD-80s, and ATR-72s. Of course, they need to keep many distinct kinds of
records on these planes.

The structure of their “database” should be influenced by the kinds of
questions they need to ask. These include:

1. How many seats does the DC-10 have?
2. How often must an ATR-72 be serviced?
3. What is the top speed of an MD-80?

These questions all relate to a specific class of aircraft, rather than to an
individual plane. This suggests the following structure:

Write out the five part design
methodology on the top board.
Leave space after Examples for
Template

;; a brand is structure
;; (make-brand type speed seats service)
;; where type is a symbol and speed, seats, and service are numbers
(define-struct brand (type speed seats service))

Example data for JetSet Airlines might be

(define brand1
 (make-brand `DC-10 550 282 15000))
(define brand2
 (make-brand `MD-80 505 141 10000))
(define brand3
 (make-brand `ATR-72 300 46 50000))

To build up our queries, we could construct max-dist, a program which
takes a brand (the structure) and a number of hours and returns the
maximum distance that a plane can fly in that time.

;; max-dist: brand num -> num
;; Purpose: compute the maximum distance that a brand can fly in a
given number
;; of hours
(define (max-dist a-brand hours) …)

Test data:

(max-dist (make-brand `ATR-72 300 46 5000) 0) = 0
(max-dist (make-brand `DC-10 550 282 15000) 2) = 1100
(max-dist (make-brand `MD-80 505 141 10000) 10) = 5050

This exercise shows us that we want to multiply the speed by hours.

And, fill in the function body:

To fill in the function body, we must use the facts that we know about
brands. As a matter of methodology (and a crutch for those of us with bad
short-term memories), we write it all down in a template.

(define (… a-brand …)
 (… (brand-type a-brand) …
 … (brand-speed a-brand) …
 … (brand-seats a-brand) …
 … (brand-service a-brand) …)
)

The template lacks a
program name, because it
is problem-independent. It
relies solely on the
structure of the input data.

The template shows us all of the pieces of information that are available to
us for a brand. It explicitly lists the access-programs, or selectors, that let a
program obtain the value for those pieces of information inside the structure.

Given the template, we can write the program by filling in the details, from
our examples, and discarding the rest.

(define (max-dist a-brand hours)
(* (brand-speed a-brand) hours))

Hand evaluation of one or more examples.

We plug templates into the methodology right after examples.

The template is the “problem independent” part of the code that depends
entirely on the data structure. The contract, purpose, and header are entirely
“problem-specific,” and independent of the details of how a plane is put
together.

In-class Example (5 minutes)
Write a program “needs-service?” which consumes a brand and a number of
miles, and returns true if the brand must be serviced after having flown the
given number of miles. Follow the five steps of the methodology.

Summary
In the last two lectures, we’ve added two steps to our design methodology
(or design recipe, as the book prefers to call it).
1. Data analysis – write down data definitions for all the structures
2. Contract, purpose, header
3. Examples
4. Template – write down all the access programs that we might use in the

form of a program body
5. Write the body (using the template)
6. Test the program (using the examples from step 3)

See the summary on page 71 of the book.

Next Class—Tying data together

