
COMP 210, Spring 2002 1

Administrative Notes
Extra credit homework
• Due Today

Third exam
• Available now
• Due next Wednesday, April 24, at 5 pm outside my office
• Closed notes, closed book
• Material since second exam, through today

COMP 210, Spring 2002 2

Next Week
Of course, I cannot test you on next week’s material
• Look at imperative programming

→ We’ve indoctrinated you into the functional style
→ We’ve (finally) let you use set! (+ set-structure! & vector-set!)

• The functional patterns work in imperative programming
→ They produce working code
→ The code can be inefficient

• We’ll study quicksort
→ Rewrite it to use vectors (more practice with vector)

→ Rewrite it to use set! well (thinking in imperative terms)

→ Rewrite it in C (introduce you to C)

Assignment is often an
efficiency hack

COMP 210, Spring 2002 3

Last Class
Wrote code to maintain rankings for the ITF
• Limited number of data items (100 players)
• Need for efficient random access to data on players
• Led to vectors

Today
• Couple of applications for vectors
• Brief review for exam

COMP 210, Spring 2002 4

Vectors
Interface
• vector is analogous to list

• vector is supported by several functions
→ vector-length
→ vector-ref
→ vector-set!

• Initializer: build-vector: num (num->num) -> vector

(define KeithFavorites (vector ‘COMP412 ‘CAAM460 ‘ENGL317))

(vector-length KeithFavorites) ⇒ 3

(vector-ref KeithFavorites 2) ⇒ ‘ENGL317

(vector-set! KeithFavorites 0 ‘COMP210)

(build-vector 5 (lambda(x)(* x x))) ⇒ (vector 0 1 4 9 16)

COMP 210, Spring 2002 5

Applications of Vector
Linear Algebra
• Vectors are a common abstraction in mathematics

→ What’s the common name for Math 212?

• A vector is a k-tuple of scalars (numbers)
→ Specifies a point in vector space

• Important operations on vectors
→ Scalar arithmetic : s x v or s + v
→ Vector arithmetic : v x w or v + w

COMP 210, Spring 2002 6

Applications of Vector
Scalar arithmetic
• Scalar-vector addition

;; scalar-add : number vector of number -> vector of number
;; Purpose: compute the sum of a scalar and a vector
(define (scalar-add a-num a-vec)
 (build-vector (vector-length a-vec) (lambda(i)(* a-num (vector-ref a-vec i)))))

Need to create a vector to hold the result

Must be “conformable” to input vector

Do the actual work in an anonymous
initialization function !

COMP 210, Spring 2002 7

Applications of Vector
Scalar arithmetic
• Scalar-vector addition

• Scalar-vector multiplication

;; scalar-add : number vector of number -> vector of number
;; Purpose: compute the sum of a scalar and a vector
(define (scalar-add a-num a-vec)
 (build-vector (vector-length a-vec) (lambda(i)(+ a-num (vector-ref a-vec i)))))

;; scalar-mult : number vector of number -> vector of number
;; Purpose: compute the product of a scalar and a vector
(define (scalar-mult a-num a-vec)
 (build-vector (vector-length a-vec) (lambda(i)(* a-num (vector-ref a-vec i)))))

Code is quite similar ⇒ Create an abstract function

COMP 210, Spring 2002 8

Applications of Vector
Abstracting scalar-add and scalar-mult
• Scalar arithmetic

;; scalar-arith : num vector of num (num num -> num) -> vector of num
;; Purpose: apply function argument to vector and scalar, elementwise
(define (scalar-arith a-num a-vec an-op)
 (build-vector (vector-length a-vec)

 (lambda(i)(an-op a-num (vector-ref a-vec i)))))

What changed?And we can rewrite scalar-add & scalar-mult appropriately …
;; scalar-add : num vector of num -> vector of num
(define (scalar-add s v) (scalar-arith s v +))

;; scalar-mult : num vector of num -> vector of num
(define (scalar-mult s v) (scalar-mult s v *))

COMP 210, Spring 2002 9

Applications of Vector
Vector arithmetic
• Follows in a straightforward fashion

;; vector-arith: vector vector (num num -> num) -> vector
;; Purpose: apply function argument to two vectors
(define (vector-arith vec1 vec2 an-op)
 (build-vector (vector-length vec1)

 (lambda(i)(an-op (vector-ref vec1 i) (vector-ref vec2 i)))))

And we can write vector-add & vector-mult …
;; vector-add : vector of num vector of num -> vector of num
(define (vector-add v1 v2) (vector-arith v1 v2 +))

;; vector-mult : vector of num vector of num -> vector of num
(define (vector-mult v1 v2) (vector-mult v1 v2 *))

Assume that vec1 & vec2 are conformable

COMP 210, Spring 2002 10

What about Arrays?
Array is either
• Vector of columns, where column is vector

COMP 210, Spring 2002 11

What about Arrays?
Array is either
• Vector of columns, where column is vector, or
• Vector of rows, where row is a vector

COMP 210, Spring 2002 12

What about Arrays?
Array is either
• Vector of columns, where column is vector, or
• Vector of rows, where row is a vector

Clever student can build arrays using the initializer
• Call build-vector inside build-vector
• Must use nested vector-ref and vector-set! operations

→ A little awkward, but you can write your own interface

This is the way that Java does it
(early C did this, too)

COMP 210, Spring 2002 13

Material for the Exam
You are responsible for:
• Contents of lecture — both class and lab lecture
• Sections 25 to 43 in the book (as it relates to lecture)

• All lecture notes are online, except John’s lecture on binary
search

• Fall 2000, Exam 3 is online
• Lab lecture notes are up-to-date online

Every test (so far) has had
• Question on each major topic
• Question drawn from lab lectures

COMP 210, Spring 2002 14

Material for the Exam
The major topics since the second exam include:
• Generative recursion

→ Binary search, find-flights, …
• Accumulators

→ Reverse, max (not accumulators on trees)
• Local state

→ Memo-functions, address-book
• Data-hiding and abstraction

→ Address-book generator
• Equality (equal? versus eq?)
• Vectors

Too many topics
• 4 questions on 4 topics
• Extra credit
Adds a little suspense …

