Administrative Notes

Extra credit homework

* Due Friday
* Counts as 10 point extra credit foward homework grade

Third exam

* Available Friday

* Due April 24 at 5 pm

* Closed notes, closed book

* Material since second exam
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Rankings

International Tennis Federation (Tiddlywinks?)
* Rankings of top 100 players
* Stores player's name, home country, & number matches won
* Frequent queries by rank

— Who is the 2n best player? 15 best player?

— Need a program find-by-rank: ranking number -> player

Let's develop a version

* Follow the structural recursion plan
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Rankings

Need some data definitions

;; a player is a structure
;; (make-player name home wins)
;; where name and home are symbols and wins is a number
(define-struct player (name home wins))

;; aranking is a list of player containing 100 elements
;; with the players in ascending rank order
:: We will use Scheme’s_built-in list constructor

;; find-by-rank: ranking number -> player

;; Purpose: rakes a ranking and a number and returns the player in the
" ranking indicated by the number (player in position “number”)
(define (find-by-rank a-ranking a-number) ... )

We can use the classic list template ...
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Rankings

Filling in the template

;; find-by-rank: ranking number -> player
;; Purpose: rakes a ranking and a number and returns the player in the
" ranking indicated by the number (player in position “humber”)
(define (find-by-rank a-ranking player-number)
(local [(define (helper alop at)
(cond [(= at player-number) (first alop)]
[else (helper (rest alop) (add1 at))] )) ]
(helper a-ranking 1)

This is fairly straightforward

COMP 210, Spring 2002



Rankings

Could also have written

;; find-by-rank: ranking number -> player
;; Purpose: rakes a ranking and a number and returns the player in the
" ranking indicated by the number (player in position “humber”)
(define (find-by-rank a-ranking player-number)
(cond [(= player-number 1) (first a-ranking)]
[else (find-by-rank (rest a-ranking) (sub1 player-number))]

)

This one counts down to the desired position
* Relies implicitly on player-number being a natural number
* Somewhat simpler to read and write
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Rankings

Scheme provides this functionality
list-ref: list-of-alpha number -> alpha

We can write find-by-rank using list-ref

;; find-by-rank: ranking number -> player

;; Purpose: rakes a ranking and a number and returns the player in the
" ranking indicated by the number (player in position “humber”)
(define (find-by-rank a-ranking player-number)

(list-ref a-ranking| (sub1 player-number)u)\

List-ref takes an
index from O to n-1.

This is much easier to writel Rankings are 1 fo n.

* Advantage of using pre-written code !
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Rankings

What's wrong with this code?

* Lately, we only put code up to criticize it
;; find-by-rank: ranking number -> player

;; Purpose: rakes a ranking and a number and returns the player in the
" ranking indicated by the number (player in position “number”)

(define (find-by-rank a-ranking player-number)
(list-ref a-ranking (sub1 player-number) ))

How long does it take fto return an answer?
* Number of recursive calls is proportional to rank

— Uniform distribution of requests means average of 50
* We should be able to do better than that

Hint: how many players are in the ranking?
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Speeding up find-by-rank

The rankings have fixed length
* Lists work well for unbounded sets of items
*  Structures work well for data-sets of known size

What about using a structure for the ranking?
— Standard COMP 210 reasoning

;; @ ranking is a structure

;; (make-ranking p1 p2 p3 ... p100)

;; Where all the p, are players

(define-struct ranking (p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 ... p100))

Need to type them all out explicitly
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Speeding up find-by-rank

Using the ranking structure

;; find-by-rank: ranking number -> player
(define (find-by-rank a-ranking player-number)

(cond [(= player-number 1) (ranking-p1 a-ranking)]
[(= player-number 2) (ranking-p2 a-ranking)]
[(= player-number 3) (ranking-p3 a-ranking)]

[(= player-number 100) (ranking-p100 a-ranking)]
)

This has some of the right ideas
* It does not walk the list of rankings
* But, how many cond clauses does it evaluate?
— On average, with normally distributed rankings, 50
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Speeding up find-by-rank

What's the real problem here?
*  We pushed the complexity into the data definition
*  We pushed the cost into evaluating the cond clauses

The real issue

*  We need a mechanism to compute the name of an element in
the ranking

* List-ref simulates this, but we saw how it works

— The simulation does the computation with structural
recursion over the integers, which is expensive

* Need a faster way
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Desiderata

Need a data structure with specific properties
* Quick, direct random access of a structure
* Computed hames to give a list-ref like interface

Enter the vector
* Fixed number of elements
* Named by their ordinal position in the vector
* Accessed directly by that number
— Computer scientists start numbers with zero, not one
* Fast, efficient access by element number
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Vectors

Interface

* vector is analogous to list

(define KeithFavorites (vector ‘COMP412 ‘CAAM460 ‘ENGL314))

* vector is supported by several functions
— vector-length  (vector-length KeithFavorites) = 3

— vector-ref (vector-ref KeithFavorites 2) = ‘ENGL314
— vector-set! (vector-set! KeithFavorites 0 ‘COMP210)

* Initializer: build-vector: hum (num->hum) -> vector

(build-vector 5 (lambda(x)(* x x))) = (vector014 9 16)
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Vectors

Why use a vector?

* The cost for vector-ref is independent of position
* Number of components is fixed

* Since index is a number, can compute the index

Rewriting find-by-rank
;; a ranking is a vector of 100 players

;; find-by-rank: ranking number -> player
(define (find-by-rank a-ranking player-number)
(vector-ref a-ranking |(sub1 player-number)[) )

Cost is
constant

Again, index starts at zero

Now, how do we create a vector & modify rankings?
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Finishing up the rankings

Create an empty ranking

;; make-ranking: number -> vector Cost is
;; Purpose: create a vector with all components set to false proportional
(define (make-ranking size) to size

(build-vector size (lambda(x) false)) )

Change a ranking

;; rank-player! : ranking number player -> true
;; Purpose: fill the rank specified by the number with the player | ~ys+ /s
(define (rank-player! a-ranking a-number a-player)
(begin
(vector-set! a-ranking (sub1 a-number) a-player)
true))

constant
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Next Class

More fun with vectors
* Revisit Hoare's quicksort algorithm

— Think about the operation of picking a pivot
* Review for the exam
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