Administrative Notes

Extra credit homework

* Due Friday
* Counts as 10 point extra credit foward homework grade

Third exam

* Available Friday

* Due April 24 at 5 pm

* Closed notes, closed book

* Material since second exam

COMP 210, Spring 2002

Rankings

International Tennis Federation (Tiddlywinks?)
* Rankings of top 100 players
* Stores player's name, home country, & number matches won
* Frequent queries by rank

— Who is the 2n best player? 15 best player?

— Need a program find-by-rank: ranking number -> player

Let's develop a version

* Follow the structural recursion plan

COMP 210, Spring 2002

Rankings

Need some data definitions

;; a player is a structure
;; (make-player name home wins)
;; where name and home are symbols and wins is a number
(define-struct player (name home wins))

;; aranking is a list of player containing 100 elements
;; with the players in ascending rank order
:: We will use Scheme’s_built-in list constructor

;; find-by-rank: ranking number -> player

;; Purpose: rakes a ranking and a number and returns the player in the
" ranking indicated by the number (player in position “number”)
(define (find-by-rank a-ranking a-number) ...)

We can use the classic list template ...
COMP 210, Spring 2002

Rankings

Filling in the template

;; find-by-rank: ranking number -> player
;; Purpose: rakes a ranking and a number and returns the player in the
" ranking indicated by the number (player in position “humber”)
(define (find-by-rank a-ranking player-number)
(local [(define (helper alop at)
(cond [(= at player-number) (first alop)]
[else (helper (rest alop) (add1 at))]))]
(helper a-ranking 1)

This is fairly straightforward

COMP 210, Spring 2002

Rankings

Could also have written

;; find-by-rank: ranking number -> player
;; Purpose: rakes a ranking and a number and returns the player in the
" ranking indicated by the number (player in position “humber”)
(define (find-by-rank a-ranking player-number)
(cond [(= player-number 1) (first a-ranking)]
[else (find-by-rank (rest a-ranking) (sub1 player-number))]

)

This one counts down to the desired position
* Relies implicitly on player-number being a natural number
* Somewhat simpler to read and write

COMP 210, Spring 2002

Rankings

Scheme provides this functionality
list-ref: list-of-alpha number -> alpha

We can write find-by-rank using list-ref

;; find-by-rank: ranking number -> player

;; Purpose: rakes a ranking and a number and returns the player in the
" ranking indicated by the number (player in position “humber”)
(define (find-by-rank a-ranking player-number)

(list-ref a-ranking| (sub1 player-number)u)\

List-ref takes an
index from O to n-1.

This is much easier to writel Rankings are 1 fo n.

* Advantage of using pre-written code !

COMP 210, Spring 2002

Rankings

What's wrong with this code?

* Lately, we only put code up to criticize it
;; find-by-rank: ranking number -> player

;; Purpose: rakes a ranking and a number and returns the player in the
" ranking indicated by the number (player in position “number”)

(define (find-by-rank a-ranking player-number)
(list-ref a-ranking (sub1 player-number)))

How long does it take fto return an answer?
* Number of recursive calls is proportional to rank

— Uniform distribution of requests means average of 50
* We should be able to do better than that

Hint: how many players are in the ranking?
COMP 210, Spring 2002

Speeding up find-by-rank

The rankings have fixed length
* Lists work well for unbounded sets of items
* Structures work well for data-sets of known size

What about using a structure for the ranking?
— Standard COMP 210 reasoning

;; @ ranking is a structure

;; (make-ranking p1 p2 p3 ... p100)

;; Where all the p, are players

(define-struct ranking (p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 ... p100))

Need to type them all out explicitly

COMP 210, Spring 2002 Now, how do we write find-by-rank?

Speeding up find-by-rank

Using the ranking structure

;; find-by-rank: ranking number -> player
(define (find-by-rank a-ranking player-number)

(cond [(= player-number 1) (ranking-p1 a-ranking)]
[(= player-number 2) (ranking-p2 a-ranking)]
[(= player-number 3) (ranking-p3 a-ranking)]

[(= player-number 100) (ranking-p100 a-ranking)]
)

This has some of the right ideas
* It does not walk the list of rankings
* But, how many cond clauses does it evaluate?
— On average, with normally distributed rankings, 50

COMP 210, Spring 2002 9

Speeding up find-by-rank

What's the real problem here?
* We pushed the complexity into the data definition
* We pushed the cost into evaluating the cond clauses

The real issue

* We need a mechanism to compute the name of an element in
the ranking

* List-ref simulates this, but we saw how it works

— The simulation does the computation with structural
recursion over the integers, which is expensive

* Need a faster way

COMP 210, Spring 2002 10

Desiderata

Need a data structure with specific properties
* Quick, direct random access of a structure
* Computed hames to give a list-ref like interface

Enter the vector
* Fixed number of elements
* Named by their ordinal position in the vector
* Accessed directly by that number
— Computer scientists start numbers with zero, not one
* Fast, efficient access by element number

COMP 210, Spring 2002 11

Vectors

Interface

* vector is analogous to list

(define KeithFavorites (vector ‘COMP412 ‘CAAM460 ‘ENGL314))

* vector is supported by several functions
— vector-length (vector-length KeithFavorites) = 3

— vector-ref (vector-ref KeithFavorites 2) = ‘ENGL314
— vector-set! (vector-set! KeithFavorites 0 ‘COMP210)

* Initializer: build-vector: hum (num->hum) -> vector

(build-vector 5 (lambda(x)(* x x))) = (vector014 9 16)

COMP 210, Spring 2002 12

Vectors

Why use a vector?

* The cost for vector-ref is independent of position
* Number of components is fixed

* Since index is a number, can compute the index

Rewriting find-by-rank
;; a ranking is a vector of 100 players

;; find-by-rank: ranking number -> player
(define (find-by-rank a-ranking player-number)
(vector-ref a-ranking |(sub1 player-number)[))

Cost is
constant

Again, index starts at zero

Now, how do we create a vector & modify rankings?

COMP 210, Spring 2002 13

Finishing up the rankings

Create an empty ranking

;; make-ranking: number -> vector Cost is
;; Purpose: create a vector with all components set to false proportional
(define (make-ranking size) to size

(build-vector size (lambda(x) false)))

Change a ranking

;; rank-player! : ranking number player -> true
;; Purpose: fill the rank specified by the number with the player | ~ys+ /s
(define (rank-player! a-ranking a-number a-player)
(begin
(vector-set! a-ranking (sub1 a-number) a-player)
true))

constant

COMP 210, Spring 2002 14

Next Class

More fun with vectors
* Revisit Hoare's quicksort algorithm

— Think about the operation of picking a pivot
* Review for the exam

COMP 210, Spring 2002

15

