
COMP 210, Spring 2002 1

Administrative Notes
Extra credit homework
• Due Friday
• Counts as 10 point extra credit toward homework grade

Third exam
• Available Friday
• Due April 24 at 5 pm
• Closed notes, closed book
• Material since second exam

COMP 210, Spring 2002 2

Rankings
International Tennis Federation            (Tiddlywinks?)
• Rankings of top 100 players
• Stores player’s name, home country, & number matches won
• Frequent queries by rank

→ Who is the 2nd best player? 15th best player?
→ Need a program find-by-rank: ranking number -> player

Let’s develop a version
• Follow the structural recursion plan



COMP 210, Spring 2002 3

Rankings
Need some data definitions

We can use the classic list template …

;; a player is a structure
;;  (make-player  name home wins)
;; where name and home are symbols and wins is a number
(define-struct player (name home wins))

;; a ranking is a list of player containing 100 elements
;;    with the players in ascending rank order
;; We will use Scheme’s built-in list constructor

;; find-by-rank:  ranking number -> player
;; Purpose: rakes a ranking and a number and returns the player in the
;;       ranking indicated by the number (player in position “number”)
(define (find-by-rank a-ranking a-number) … )

COMP 210, Spring 2002 4

Rankings
Filling in the template

This is fairly straightforward

;; find-by-rank:  ranking number -> player
;; Purpose: rakes a ranking and a number and returns the player in the
;;       ranking indicated by the number (player in position “number”)
(define (find-by-rank a-ranking player-number)
    (local [(define (helper alop at)

     (cond [(= at player-number)  (first alop)]
[else (helper (rest alop) (add1 at))] )) ]

(helper a-ranking 1)
     )



COMP 210, Spring 2002 5

Rankings
Could also have written

This one counts down to the desired position
• Relies implicitly on player-number being a natural number
• Somewhat simpler to read and write

;; find-by-rank:  ranking number -> player
;; Purpose: rakes a ranking and a number and returns the player in the
;;       ranking indicated by the number (player in position “number”)
(define (find-by-rank a-ranking player-number)
    (cond [(= player-number 1) (first a-ranking)]

[else (find-by-rank (rest a-ranking) (sub1 player-number))]
     ))

COMP 210, Spring 2002 6

Rankings
Scheme provides this functionality

list-ref: list-of-alpha number -> alpha

We can write find-by-rank using list-ref

This is much easier to write!
• Advantage of using pre-written code !

;; find-by-rank:  ranking number -> player
;; Purpose: rakes a ranking and a number and returns the player in the
;;       ranking indicated by the number (player in position “number”)
(define (find-by-rank a-ranking player-number)
    (list-ref  a-ranking (sub1 player-number) ))

List-ref takes an
index from 0 to n-1.

Rankings are 1 to n.



COMP 210, Spring 2002 7

Rankings
What’s wrong with this code?
• Lately, we only put code up to criticize it!

;; find-by-rank:  ranking number -> player
;; Purpose: rakes a ranking and a number and returns the player in the
;;       ranking indicated by the number (player in position “number”)
(define (find-by-rank a-ranking player-number)
    (list-ref  a-ranking (sub1 player-number) ))

How long does it take to return an answer?
• Number of recursive calls is proportional to rank

→ Uniform distribution of requests means average of 50
• We should be able to do better than that

Hint: how many players are in the ranking?

COMP 210, Spring 2002 8

Speeding up find-by-rank
The rankings have fixed length
• Lists work well for unbounded sets of items
• Structures work well for data-sets of known size

What about using a structure for the ranking?
→ Standard COMP 210 reasoning

;; a ranking is a structure
;;   (make-ranking p1 p2 p3 … p100)
;; where all the pi are players
(define-struct ranking (p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 … p100))

Need to type them all out explicitly

Now, how do we write find-by-rank?



COMP 210, Spring 2002 9

Speeding up find-by-rank
Using the ranking structure

This has some of the right ideas
• It does not walk the list of rankings
• But, how many cond clauses does it evaluate?

→ On average, with normally distributed rankings, 50

;; find-by-rank:  ranking number -> player
(define (find-by-rank a-ranking player-number)
    (cond [(= player-number 1) (ranking-p1 a-ranking)]

[(= player-number 2) (ranking-p2 a-ranking)]
[(= player-number 3) (ranking-p3 a-ranking)]
 …
[(= player-number 100) (ranking-p100 a-ranking)]

     ))

COMP 210, Spring 2002 10

Speeding up find-by-rank
What’s the real problem here?
• We pushed the complexity into the data definition
• We pushed the cost into evaluating the cond clauses

The real issue
• We need a mechanism to compute the name of an element in

the ranking
• List-ref simulates this, but we saw how it works

→ The simulation does the computation with structural
recursion over the integers, which is expensive

• Need a faster way



COMP 210, Spring 2002 11

Desiderata
Need a data structure with specific properties
• Quick, direct random access of a structure
• Computed names to give a list-ref like interface

Enter the vector
• Fixed number of elements
• Named by their ordinal position in the vector
• Accessed directly by that number

→ Computer scientists start numbers with zero, not one
• Fast, efficient access by element number

COMP 210, Spring 2002 12

Vectors
Interface
• vector is analogous to list

• vector is supported by several functions
→ vector-length
→ vector-ref
→ vector-set!

• Initializer: build-vector: num (num->num) -> vector

(define KeithFavorites (vector ‘COMP412 ‘CAAM460 ‘ENGL314))

(vector-length KeithFavorites) ⇒ 3

(vector-ref  KeithFavorites 2) ⇒ ‘ENGL314

(vector-set! KeithFavorites 0  ‘COMP210)

(build-vector  5  (lambda(x)(* x x)))  ⇒  (vector 0 1 4 9 16)



COMP 210, Spring 2002 13

Vectors
Why use a vector?
• The cost for vector-ref is independent of position
• Number of components is fixed
• Since index is a number, can compute the index

Rewriting find-by-rank

Now, how do we create a vector & modify rankings?

;; a ranking is a vector of 100 players

;; find-by-rank:  ranking number -> player
(define (find-by-rank a-ranking player-number)
    (vector-ref  a-ranking (sub1 player-number) ) )

Again, index starts at zero

Cost is
constant

COMP 210, Spring 2002 14

Finishing up the rankings
Create an empty ranking

Change a ranking

;; make-ranking: number -> vector
;; Purpose: create a vector with all components set to false
(define (make-ranking size)
    (build-vector  size (lambda(x) false)) )

;; rank-player! : ranking number player -> true
;; Purpose: fill the rank specified by the number with the player
(define (rank-player! a-ranking a-number a-player)
    (begin
        (vector-set!  a-ranking (sub1 a-number) a-player)
         true))

Cost is
proportional
to size

Cost is
constant



COMP 210, Spring 2002 15

Next Class
More fun with vectors
• Revisit Hoare’s quicksort algorithm

→ Think about the operation of picking a pivot
• Review for the exam


