
COMP 210, Spring 2002 1

Address book
More efficient update

Interface changed, too
• For no extra cost, we can return false on failure
• Does not add new entries

;; change-number3: symbol number -> boolean
;; Purpose: changes an existing phone number in the address book
;; Effect: modifies entry’s phone number in place
(define (change-number3 who phone)
 local [(define aloe (filter (lambda(x)(symbol=? who (entry-name x)))

address-book))]
 (cond [(empty? aloe) false]

 [(cons? aloe)
 (begin

(set-entry-number! (first aloe) phone)
 true)])))

COMP 210, Spring 2002 2

Administrative Notes
Extra credit homework
• Due Friday
• Counts as 10 point extra credit toward homework grade

Third exam
• Available Friday
• Due April 24 at 5 pm
• Closed notes, closed book
• Material since second exam

COMP 210, Spring 2002 3

Back to the address book
More efficient update

Interface changed, too
• For no extra cost, we can return false on failure
• Does not add new entries

;; change-number3: symbol number -> boolean
;; Purpose: changes an existing phone number in the address book
;; Effect: modifies entry’s phone number in place
(define (change-number3 who phone)
 local [(define aloe (filter (lambda(x)(symbol=? who (entry-name x)))

address-book))]
 (cond [(empty? aloe) false]

 [(cons? aloe)
 (begin

(set-entry-number! (first aloe) phone)
 true)])))

Changes contents of
(first aloe)

 Deeper question:
when are two
structures the same

COMP 210, Spring 2002 4

Identity among structures
If we type

Are x and y the same?
• What does this question mean?

→ Are the structures identical (same value, same behavior)?
→ Are the structures implemented with the same object?

• They have the same shape
• They have the same values in the same places

(define x (make-entry ‘keith 7133486013))
(define y (make-entry ‘keith 7133486013))

(= (entry-number x) (entry-number y)) ⇒ true
(symbol=? (entry-name x) (entry-name y)) ⇒ true

What about
x and y?

COMP 210, Spring 2002 5

Identity among structures
Can we tell if x and y are the same structure?
• Scheme’s equal? predicate tests equality

(define x (make-entry ‘keith 7133486013))
(define y (make-entry ‘keith 7133486013))
(equal? x y) ⇒ true

Now, try
 (set-entry-number! y 12)
 (equal? x y) ⇒ ?

This raises a number of questions
• Does set-entry-number! change y?
• Does set-entry-number! change x?
• How do we model (& understand) x and y?

*

false

COMP 210, Spring 2002 6

Identity among structures

(equal? x y)

Equality operators

Tests whether two values have the same structure & values
• Checks value in each position in structure
• Performs check recursively
This provides an extensional notion of equality
• Starts from the structure of each argument
• Equality based on identical structure & identical value

⇒ DrScheme

COMP 210, Spring 2002 7

Identity among structures
Equality operators

Tests whether two names refer to the same object
• Returns true if they refer to the same object
• Returns false if they refer to different objects

→ Even if the objects are equivalent (equal?)
This provides an intensional notion of equality
• Objects are identical if & only if they have the same

implementation
• Equality based on where in memory the values reside

(eq? x y)

⇒ DrScheme

COMP 210, Spring 2002 8

Identity
Can we make this more concrete?
• a and b are Scheme objects

a

b

Each Scheme object has a value
(define a 4)
(define b ‘fee)

Gives a and b the appropriate values

4

‘fee

Value must be
different than the
name for set! to
work

COMP 210, Spring 2002 9

Identity
Can we make this more concrete?
• Some objects have unique implementations

(define b ‘fee)

(define c ‘fee)
(eq? b c) ⇒ true

b

c

‘fee

This tells us something about the implementation

What about numbers? ⇒ DrScheme

COMP 210, Spring 2002 10

Identity
Can we make this more concrete?
• Structures are Scheme objects

(define x (make-entry ‘Keith 7133486013))

(define y (make-entry ‘Keith 7133486013))
(eq? x y) ⇒ false

We can show this in DrScheme

This tells us more about the implementation

7133486013

x

y

(make-entry)

‘Keith

(make-entry)

Implicit names
for objects

COMP 210, Spring 2002 11

Identity

We’ve studied a few objects

Can they teach us about define, set!, and set-structure! ?

b

c

‘fee

a 4

Mapping from names to objects

Space of objects & values

7133486013

x

y

(make-entry)

‘Keith

(make-entry)

COMP 210, Spring 2002 12

Identity

We’ve studied a few objects

b

c

‘fee

a 4
Define adds a name to the mapping
and makes its box refer to a specific
value

(define z 17) adds a name, a box, and
a value

z 17

7133486013

x

y

(make-entry)

‘Keith

(make-entry)

COMP 210, Spring 2002 13

Identity

We’ve studied a few objects

b

c

‘fee

a 4
Set! changes the mapping from a
name (implicit or explicit) to a box

z 17

7133486013

x

y

(make-entry)

‘Keith

(make-entry)

COMP 210, Spring 2002 14

Identity

We’ve studied a few objects

b

c

‘fee

a 4
Set! changes the mapping from a
name (implicit or explicit) to a box

z 17

(set! c 12) creates a box & value
for 12, and moves the arrow for c

7133486013

x

y

(make-entry)

‘Keith

(make-entry)

12

COMP 210, Spring 2002 15

Identity

We’ve studied a few objects

b

c

‘fee

a 4
Set-structure! replaces the box
inside the structure with another box

z 17

7133486013

x

y

(make-entry)

‘Keith

(make-entry)

12

COMP 210, Spring 2002 16

Identity

We’ve studied a few objects

b

c

‘fee

a 4
Set-structure! replaces the box inside
the structure with another box

z 17

(set-entry-number! y 12) replaces
the box in the number position in y

7133486013

x

y

(make-entry)

‘Keith

(make-entry)

12

COMP 210, Spring 2002 17

Identity
Now, we can explain equal? and eq?
• equal? is a a recursive program

→ Tests, at each level, for structure & value identity
→ Must traverse entire structure
→ Returns true if & only if all components are identical

• eq? checks if the arguments refer to the same box
→ No notion of value or structure
→ Simply looks at the box
→ Returns false for different boxes, even if arguments are

actually “equal?”

