
COMP 210, Spring 2002 1

Administrative Notes
Last Homework
• Available this afternoon
• Due next Friday

COMP 210, Spring 2002 2

Address book example
• We defined a structure to hold names & numbers
• We built some functions

→ Lookup-number, add-to-address-book
→ Change-number (several versions, set-structure!)

• We looked at ways to hide the actual address-book object
→ Ended up building an interface function
→ Address-interface: symbol -> function

COMP 210, Spring 2002 3

Hiding data
Schema for address-book

(define address-interface
 (local [(define address-book empty)

 (define (lookup-number who)
 (…))

 (define (add-to-address-book who phone)
 (…))
 (define (change-number who phone)

 (…))]

 (lambda(x)

 (cond [(symbol=? ‘lookup x) lookup-name]
 [(symbol=? ‘add x) add-to-address-book]
 [(symbol=? ‘change x) change-number]))))

The actual
code & data

The
interface

Address-interface is defined as the interface function

COMP 210, Spring 2002 4

Hiding data
Using it

((address-interface ‘add) ‘Keith 7136656325)

((address-interface ‘lookup) ‘Tim)

Kind of awkward

(define lookup (address-interface ‘lookup))

(define add (address-interface ‘add))

(define change (address-interface ‘change))

(add ‘Keith 7136656325)

(lookup ‘Tim)

COMP 210, Spring 2002 5

Handling success
Of course, since this address book is revolutionary …
• Others want to use it
• It only creates one address book

→ Accessed through the interface, but one book
• Need a way to create multiple, independent books

COMP 210, Spring 2002 6

Handling success (and reuse)
Add one more layer …
(define create-address-book
 (local [(define address-interface
 (local [(define address-book empty)

 (define (lookup-number who)
 (…))

 (define (add-to-address-book who phone)
 (…))
 (define (change-number who phone)

 (…))]

 (lambda(x)

 (cond [(symbol=? ‘lookup x) lookup-name]
 [(symbol=? ‘add x) add-to-address-book]
 [(symbol=? ‘change x) change-number]))))]

(lambda() address-interface)
))

Function of zero arguments that
returns an address-book interface

COMP 210, Spring 2002 7

Handling success (and reuse)
Using it

(define KeithBook (create-address-book))

((KeithBook ‘add) ‘Keith 7136656325)

((KeithBook ‘add) ‘Tim 7133485185)

((KeithBook ‘lookup) ‘Tim) ⇒ 7133485185

(define LindaBook (create-address-book))

((LindaBook ‘add) ‘Vicky 7133486041)

((KeithBook ‘lookup) ‘Vicky) ⇒ false

((LindaBook ‘lookup) ‘Tim) ⇒ false

….

COMP 210, Spring 2002 8

Handling success (and reuse)
And, of course, we can create shortcuts

(define KeithBook (create-address-book))

(define klookup (KeithBook ‘lookup))

(define kadd (KeithBook ‘add))

(kadd ‘Tim 7133485185)

(klookup ‘Tim) ⇒ 7133485185

(klookup ‘Keith) ⇒ false

….

COMP 210, Spring 2002 9

Handling success
What happened?
• Create-address-book returns address-interface

→ Every time it runs, it creates a new address-interface
→ And a new local inside it
→ And a new address book with the access functions

• Separate invocations of create address book
→ Create separate copies of lookup-name, add-to-address-

book, and change-number, along with address-book
→ Rewriting for local gives them all unique names
→ Bindings ensure separation & privacy

• No other code can touch your address book

COMP 210, Spring 2002 10

Handling success (and reuse)

KeithBook
address-book

lookup-name

add-to-
address-book

change-number

COMP 210, Spring 2002 11

Handling success (and reuse)

KeithBook address-book

lookup-name

add-to-
address-book

change-number

LindaBook address-book

lookup-name

add-to-
address-book

change-number

TimBook address-book

lookup-name

add-to-
address-book

change-number

COMP 210, Spring 2002 12

The Big Picture
Introduced Scheme
• Language has almost no syntax, but lots of power
• Used Scheme to make giant strides in programming

→ Did some algebraic programming
→ Learned about unbounded data structures (lists & trees)

→ Structural recursion
→ Generative recursion
→ Abstract functions
→ Think about the complexity of missionaries & cannibals

• You’ve all done a lot of learning and a lot of work

COMP 210, Spring 2002 13

The Big Picture
What does this have to do with the rest of the world?
• They use C, or Java, or C++, or Fortran, or Perl, or …
• The basic concepts of programming are the same

→ You have been biased toward functional programming
→ Later courses will undo much of that bias

• The syntax & structure of those languages are different
→ Problem solving & program development are similar
→ Skills from 210 will help with low-level details, too

• Tools from 210 will help you understand all the other
languages that you encounter

COMP 210, Spring 2002 14

The Big Picture
COMP 210 Concepts
• Contract : notion of a type system & type correctness
• Structures : aggregates in almost every language
• Lists : natural interface in Scheme, used in many applications

where size of the input is unknown
• Trees : critical data structure for many applications
• Functions : taught you to think of them as data

→ Critical underpinning of higher-order languages
→ Tail-recursion was critical to yesterday’s talk by Taha

• Abstract functions : fundamental strategy for code reuse
• Assignment : important efficiency hack

COMP 210, Spring 2002 15

The Big Picture
Local
• Introduced it for many reasons

→ Efficiency, clarity, name-space management, …
→ Used it to isolate effects

“only set! an object defined in a local”
→ Used it to create hidden state, interface functions, …

Local models lexical scoping
• Key feature of almost all programming languages
• Minor variations in its application, rules, & use
• You now have the tools to understand those variations

