
COMP 210, Spring 2002 1

Administrative Notes
Last exam
• Hand out on 19th, due 24th (Wednesday)
• Will cover material since last exam
• Take home, three hours
• Closed notes, closed books

Last Homework
• Available this afternoon
• Due next Wednesday

COMP 210, Spring 2002 2

Set-structure!
We’ve only seen trivial examples, so far
• Develop an online address book
• Simple interface — two functions

→ Insert new addresses — <name, address> pairs
→ Lookup a name and get back a phone number

;; an entry is a structure
;; (make-entry name number)
;; where name is a symbol and number is a number
(define-struct entry (name number))

;; address-book is a list of entry
(define address-book empty) ;; initial condition

COMP 210, Spring 2002 3

Address book
And the two functions in the interface

;; lookup-number : symbol -> number or false
;; Purpose: returns the phone number for symbol, or
;; false if no entry for symbol is in address-book
(define (lookup-number who) …)

;; add-to-address-book: symbol number -> true
;; Purpose: adds an entry to the address book
(define (add-to-address-book who phone) …)

COMP 210, Spring 2002 4

Address book
What about test data?

(lookup-number ‘John)
What’s the expected answer?

That depends on the past

(add-to-address-book ‘John 7135551212)
(lookup-number ‘John)
⇒ 7135551212

With state, test data needs a
robust history (or context)

COMP 210, Spring 2002 5

Address book
;; lookup-number : symbol -> number or false
;; Purpose: returns the phone number for symbol, or
;; false if no entry for symbol is in address-book
(define (lookup-number who)
 (local [(define matches

(filter (lambda(x) (symbol=? who (entry-name x)))
 address-book))]

(cond [(empty? matches) false]
 [else (entry-number (first matches))])))

;; add-to-address-book: symbol number -> true
;; Purpose: adds an entry to the address book
;; Effect: changes the value of address-book by adding a new entry
(define (add-to-address-book who phone)
 (begin
 (set! address-book (cons (make-entry who phone) address-book))
 true))

COMP 210, Spring 2002 6

Address book
What happens when someone moves?
• Need to change their phone number
• How should we accomplish this?

Two classic schemes
• Create a new entry that supercedes old entry

→ Adds to length (& cost of filter operation in lookup)
• Rebuild the list, replacing old entry with new entry

→ Does not lengthen the list

COMP 210, Spring 2002 7

Address book
Changing an entry

Unintended consequences
• Changing a non-existent entry is same as adding it
• Either a bug or a feature

;; change-number1: symbol number -> true
;; Purpose: changes an existing phone number in the address book
;; Effect: redefines “address-book” with a new list that contains old list
(define (change-number1 who phone)
 ;; strategy 1: add to front of the list
 (begin
 (set! address-book (cons (make-entry who phone)
 address-book))
 true))

This should be
very fast

COMP 210, Spring 2002 8

Address book
Changing an entry

This version
• Does not lengthen address-book
• Filter re-builds entire address book, minus matching entries

;; change-number2: symbol number -> true
;; Purpose: changes an existing phone number in the address book
;; Effect: redefines “address-book” with a new list
(define (change-number2 who phone)
 ;; strategy 2: replace existing entry
 (begin
 (set! address-book
 (cons (make-entry who phone)

 (filter (lambda(x)(not (symbol=? who (entry-name x))))
 address-book)))

 true))

COMP 210, Spring 2002 9

Address book
Look at number of cons operations used
• Strategy 1 performs a single cons operation

→ But it grows the list over time
• Strategy 2 performs one cons in change-address2

→ But it has filter perform (length address-book) - 1 cons

Price of avoiding duplicates is checking entire list
• The cost of the cons is added to the filter
• Following the filter with the set! to redefine address-book

adds insult to the injury
→ Creates lots of garbage for DrScheme to recycle

Imagine updating Southwestern Bell’s
telephone book for Houston

Several million entries, several hundred
changes per day, …

That’s a lot of cons operations and a lot of
garbage to recycle

COMP 210, Spring 2002 10

Address book
More efficient update
• Would like to move the set! Down into the list

→ Find the entry that must change
→ Use a set!-like effect to change its number field

• Avoid rebuilding the list, doing all those cons operations,
& creating all that garbage

Enter “set-structure!”
• Define-struct creates some more functions
• For “entry”: set-entry-name! and set-entry-number!

COMP 210, Spring 2002 11

Address book
More efficient update

Interface changed, too
• For no extra cost, we can return false on failure
• Does not add new entries

;; change-number3: symbol number -> boolean
;; Purpose: changes an existing phone number in the address book
;; Effect: modifies entry’s phone number in place
(define (change-number3 who phone)
 local [(define aloe (filter (lambda(x)(symbol=? who (entry-name x)))

address-book))]
 (cond [(empty? aloe) false]

 [(cons? aloe)
 (begin

(set-entry-number! (first aloe) phone)
 true)])))

COMP 210, Spring 2002 12

Address book
The roommate problem
• Roommate wants to use your software
• Types (define address-book empty) to begin

→ Oops. There went your address book!

Malicious person can have same effect with set!
→ Change phone numbers
→ Delete money from checkbook program
→ Change password in operating system
→ And so on, …

How can we design to avoid such abuses?

COMP 210, Spring 2002 13

Hiding data
Possible solutions
• Hide address-book in a local inside the program

→ Where? What programs need access to it?
→ Kernel of a good thought here
→ Should only use set! on local objects

• Hide functions together inside a local defining address-book
→ Gives them all access to address-book
→ Gives chance to initialize address-book
→ How do we invoke the various programs?

COMP 210, Spring 2002 14

Hiding data
Try something like

(define address-interface
 (local [(define address-book empty)

 (define (lookup-number who)
 (…))

 (define (add-to-address-book who phone)
 (…))
 (define (change-number who phone)

 (…))]

… what should this program return? …

))

((first (rest address-interface)) ‘Tim 7133485185)

COMP 210, Spring 2002 15

Hiding data
Options for address-interface
1. List of functions

• (list lookup-number add-to-address-book change-
number)

• Does not scale
• Works at 3 functions, not at 20
• User must remember ordinal position

• Terrible, counter-intuitive interface
• What do you type for change-number?

• No good rationalization for it
• Function that returns a list of functions?
• This does not sound like COMP 210

Should return
one function

COMP 210, Spring 2002 16

Hiding data
Options for address-interface
2. Return one program

• It should map symbol -> program

• Now, we can instantiate address-interface and use it
• Creates private, hidden address book
• Returns a function that can be used to define accessors

(lambda(x)
 (cond
 [(symbol=? ‘lookup x) lookup-name]
 [(symbol=? ‘add x) add-to-address-book]
 [(symbol=? ‘change x) change-number]
))

COMP 210, Spring 2002 17

Hiding data
Using it

(define mybook
 (local [(define address-book empty)

 (define (lookup-number who)
 (…))

 (define (add-to-address-book who phone)
 (…))
 (define (change-number who phone)

 (…))]

 (lambda(x)

 (cond [(symbol=? ‘lookup x) lookup-name]
 [(symbol=? ‘add x) add-to-address-book]
 [(symbol=? ‘change x) change-number]))))

COMP 210, Spring 2002 18

Hiding data
Using it

((mybook ‘add) ‘Keith 7136656325)

((mybook ‘lookup) ‘Tim)

Kind of awkward

(define lookup (mybook ‘lookup))

(define add (mybook ‘add))

(define change (mybook ‘change))

(add ‘Keith 7136656325)

(lookup ‘Tim)

