
COMP 210, Spring 2002 1

Administrative Notes
Last exam
• Hand out 17th or 19th, due 24th ? (Wednesday)
• Will cover material since last exam
• Take home, three hours
• Closed notes, closed books

COMP 210, Spring 2002 2

Review from Last Class
Introduced the Scheme function set!
• (set! Object (expression))

→ Evaluates expression and causes Object to refer to its
result

→ A form of assignment

• set! produces no useful value (void)

→ First Scheme expression we’ve seen with no value
→ Need to use consecutive expressions, as with begin

• We used set! to build a memo-function

COMP 210, Spring 2002 3

Memo functions
Started from a simple abstract problem

Built a version of f that remembers
• Records arguments and results
• Checks the record before calling g again

;; f: number -> number
(define (f x)
 (g (* x x)) What is g?

We don’t need to care

COMP 210, Spring 2002 4

Memo functions
Need a representation for the results

Now,
• Need a new version of f that looks in the table

→ Returns answer from table if it is found
→ Computes and records answer if it is not found

;; a result is
;; (make-result arg answer)
;; where arg and answer are numbers
(define-struct result (arg answer))

;; table is a list of result
;; We will use Scheme’s built-in constructor for the list
(define table empty)

COMP 210, Spring 2002 5

Memo functions
We developed a memo-function version of f

This is simpler than the version in lecture 29
Following suggestion from class with filter …

;; f: number -> number
(define f
 (local [(define table empty)]
 (lambda(x)
 (local [(define prev (filter (lambda(y) (= x (result-arg y))) table))]
 (cond
 [(empty? prev)

(local [(define new-result (g (* x x)))]
 (begin

 (set! table
 (cons (make-result x new-result) table))

 new-result))]
 [else (result-answer (first prev))])))))

COMP 210, Spring 2002 6

Memo functions
Set! disrupts our model of the world
• This version of f gives the same answers as the old one
• This version computes them in a different way

Before set! the rewriting semantics was simple
• Expression evaluation did not depend on prior results
• With set!, it depends on prior results in a critical way

> (f 2)
37
> (f 3)
77
> (f 2)
37

It did not compute (g 4) this time.
It found the answer in table

COMP 210, Spring 2002 7

• set! changes the world
→ Evaluation suddenly depends on previous history
→ New complexity to the rewriting rules for Scheme

• We need to get used to this new, non-functional world
→ Most other programming languages rely on assignment

• set! introduces time into the evaluation process
→ Subtle, yet critical, change

More on set!

COMP 210, Spring 2002 8

More on set!
Consider the sequence

(define x 5)

x

(set! x (add1 x))

x
Before set!, x always had the same value
(in the same scope)

Now, the value of x depends on when we evaluate it
• Need to know what “effects” have taken place

sequence of evaluations in DrScheme

COMP 210, Spring 2002 9

That trick with lambda and local

(define (f x) (* x x x)
(define f
 (lambda(x) (* x x x))⇔

We played a little fast and loose with this one
• In slow-motion, instant replay, it works like this

• Now, f is a function of one argument with hidden state
→ We just made a more complex function of f
→ Uses set! to change its hidden state (table)
→ Uses filter to check its hidden state

(define f
 (lambda(x) (* x x x)) ⇔ (define f

 (local [(define table empty)]
 (lambda(x) (* x x x)))

COMP 210, Spring 2002 10

That trick with lambda and local
Here is the full-blown version of f

;; f: number -> number
(define f
 (local [(define table empty)]
 (lambda(x)
 (local [(define prev (filter (lambda(y) (= x (result-arg y))) table))]
 (cond
 [(empty? prev)

(local [(define new-result (g (* x x)))]
 (begin

 (set! table
 (cons (make-result x new-result) table))

 new-result))]
 [else (result-answer (first prev))])))))

The definition with hidden stateThe more complex function that uses the hidden state

COMP 210, Spring 2002 11

A final note on our memo function, f
Consider the cost of running f
• Performs a filter on whole table every time it runs
• (length table) is number of distinct arguments f has seen
• This might grow to be large
• Cost of f can grow with history

Two lessons in f
• Only use a memo-function when the underlying computation

is costly enough to justify the lookup
• Consider better techniques for the lookup

→ Binary search tree would reduce it from N to log2 N

COMP 210, Spring 2002 12

Set-structure!
We’ve only seen trivial examples, so far
• Develop an online address book
• Simple interface — two functions

→ Insert new addresses — <name, address> pairs
→ Lookup a name and get back a phone number

;; an entry is a structure
;; (make-entry name number)
;; where name is a symbol and number is a number
(define-struct entry (name number))

;; address-book is a list of entry
(define address-book empty) ;; initial condition

COMP 210, Spring 2002 13

Address book
And the two functions in the interface

;; lookup-number : symbol -> number or false
;; Purpose: returns the phone number for symbol, or
;; false if no entry for symbol is in address-book
(define (lookup-number who) …)

;; add-to-address-book: symbol number -> true
;; Purpose: adds an entry to the address book
(define (add-to-address-book who phone) …)

COMP 210, Spring 2002 14

Address book
What about test data?

(lookup-number ‘John)
What’s the expected answer?

That depends on the past

(add-to-address-book ‘John 7135551212)
(lookup-number ‘John)
⇒ 7135551212

With state, test data needs a
robust history (or context)

COMP 210, Spring 2002 15

Address book
The functions are pretty simple

;; lookup-number : symbol -> number or false
;; Purpose: returns the phone number for symbol, or
;; false if no entry for symbol is in address-book
(define (lookup-number who)
 (local [(define matches

(filter (lambda(x) (symbol=? who (entry-name x)))
 address-book))]

(cond
 [(empty? matches) false]
 [else (entry-number (first matches))]
)))

COMP 210, Spring 2002 16

Address book
The functions are pretty simple

;; add-to-address-book: symbol number -> true
;; Purpose: adds an entry to the address book
;; Effect: …
(define (add-to-address-book who phone)
 (begin
 (set! address-book

 (cons (make-entry who phone) address-book))
 true))

This is still COMP 210. We need to document the use of set!

Why? Because it shows that you’ve thought about what it does.

COMP 210, Spring 2002 17

Address book
The functions are pretty simple

;; add-to-address-book: symbol number -> true
;; Purpose: adds an entry to the address book
;; Effect: changes the value of address-book by adding a new entry
(define (add-to-address-book who phone)
 (begin
 (set! address-book

 (cons (make-entry who phone) address-book))
 true))

COMP 210, Spring 2002 18

Lambda
How do lambda & define differ?

;; times3: number -> number
(define (times3 x)
 (* 3 x))

• Creates a function that multiplies
 its input by three

• Associates that function with the
 Scheme object “times3”

;; same function, no name
(lambda (x) (* 3 x))

• Creates an anonymous function
 that multiplies its input by three

;; times3: number -> number
(define times3
 (lambda (x) (* 3 x)))

• Binds the anonymous function to
 the Scheme object “times3”

