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Administrative Notes
Last exam
• Hand out 17th or 19th, due 24th ? (Wednesday)
• Will cover material since last exam
• Take home, three hours
• Closed notes, closed books
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Review from Last Class
Introduced the Scheme function set!
• (set!  Object (expression))

→ Evaluates expression and causes Object to refer to its
result

→ A form of assignment

• set! produces no useful value (void)

→ First Scheme expression we’ve seen with no value
→ Need to use consecutive expressions, as with begin

• We used set! to build a memo-function
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Memo functions
Started from a simple abstract problem

Built a version of f that remembers
• Records arguments and results
• Checks the record before calling g again

;; f:  number -> number
(define (f x)
    (g (*  x  x)) What is g?

We don’t need to care
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Memo functions
Need a representation for the results

Now,
• Need a new version of f that looks in the table

→ Returns answer from table if it is found
→ Computes and records answer if it is not found

;; a result is
;;   (make-result arg answer)
;; where arg and answer are numbers
(define-struct result (arg answer))

;; table is a list of result
;; We will use Scheme’s built-in constructor for the list
(define table empty)
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Memo functions
We developed a memo-function version of f

This is simpler than the version in lecture 29
Following suggestion from class with filter …

;; f:  number -> number
(define f
   (local [ (define table empty) ]
        (lambda(x)
            (local [(define prev (filter (lambda(y) (= x (result-arg y))) table))]
                      (cond
                       [(empty? prev)

(local [(define new-result (g (* x x )))]
            (begin

            (set!  table
      (cons (make-result x new-result) table))

             new-result ))]
             [else (result-answer (first prev))] ))) ) )
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Memo functions
Set! disrupts our model of the world
• This version of f gives the same answers as the old one
• This version computes them in a different way

Before set! the rewriting semantics was simple
• Expression evaluation did not depend on prior results
• With set!, it depends on prior results in a critical way

> (f 2)
37
> (f 3)
77
> (f 2)
37

It did not compute (g 4) this time.
It found the answer in table
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• set! changes the world
→ Evaluation suddenly depends on previous history
→ New complexity to the rewriting rules for Scheme

• We need to get used to this new, non-functional world
→ Most other programming languages rely on assignment

• set! introduces time into the evaluation process
→ Subtle, yet critical, change

More on set!
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More on set!
Consider the sequence

(define x 5)

x

(set! x (add1 x))

x
Before set!, x always had the same value
(in the same scope)

Now, the value of x depends on when we evaluate it
• Need to know what “effects” have taken place

sequence of evaluations in DrScheme
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That trick with lambda and local

(define (f x) (* x x x)
(define f
     (lambda(x) (* x x x))⇔

We played a little fast and loose with this one
• In slow-motion, instant replay, it works like this

• Now, f is a function of one argument with hidden state
→ We just made a more complex function of f
→ Uses set! to change its hidden state                   (table)
→ Uses filter to check its hidden state

(define f
     (lambda(x) (* x x x)) ⇔ (define f

     (local [(define table empty)]
              (lambda(x) (* x x x)))
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That trick with lambda and local
Here is the full-blown version of f

;; f:  number -> number
(define f
   (local [ (define table empty) ]
        (lambda(x)
            (local [(define prev (filter (lambda(y) (= x (result-arg y))) table))]
                      (cond
                       [(empty? prev)

(local [(define new-result (g (* x x )))]
            (begin

            (set!  table
      (cons (make-result x new-result) table))

             new-result ))]
             [else (result-answer (first prev))] ))) ) )

The definition with hidden stateThe more complex function that uses the hidden state
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A final note on our memo function, f
Consider the cost of running f
• Performs a filter on whole table every time it runs
• (length table) is number of distinct arguments f has seen
• This might grow to be large
• Cost of f can grow with history

Two lessons in f
• Only use a memo-function when the underlying computation

is costly enough to justify the lookup
• Consider better techniques for the lookup

→ Binary search tree would reduce it from N to log2 N
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Set-structure!
We’ve only seen trivial examples, so far
• Develop an online address book
• Simple interface — two functions

→ Insert new addresses — <name, address> pairs
→ Lookup a name and get back a phone number

;; an entry is a structure
;;   (make-entry  name number)
;; where name is a symbol and number is a number
(define-struct entry (name number))

;; address-book is a list of entry
(define address-book empty)    ;; initial condition
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Address book
And the two functions in the interface

;; lookup-number : symbol  -> number or false
;; Purpose:  returns the phone number for symbol, or
;;                 false if no entry for symbol is in address-book
(define (lookup-number who) …)

;; add-to-address-book:  symbol  number -> true
;; Purpose: adds an entry to the address book
(define (add-to-address-book who phone) …)
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Address book
What about test data?

(lookup-number ‘John)
What’s the expected answer?

That depends on the past

(add-to-address-book ‘John 7135551212)
(lookup-number ‘John)
⇒  7135551212

With state, test data needs a
robust history (or context)
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Address book
The functions are pretty simple

;; lookup-number : symbol  -> number or false
;; Purpose:  returns the phone number for symbol, or
;;                 false if no entry for symbol is in address-book
(define (lookup-number who)
    (local [(define matches

(filter (lambda(x) (symbol=? who (entry-name x)))
         address-book))]

(cond
    [(empty? matches) false]
    [else   (entry-number (first matches))]
) ) )
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Address book
The functions are pretty simple

;; add-to-address-book:  symbol  number -> true
;; Purpose: adds an entry to the address book
;; Effect: …
(define (add-to-address-book who phone)
    (begin
         (set!  address-book

    (cons (make-entry who phone) address-book))
         true) )

This is still COMP 210.  We need to document the use of  set!

Why?  Because it shows that you’ve thought about what it does.
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Address book
The functions are pretty simple

;; add-to-address-book:  symbol  number -> true
;; Purpose: adds an entry to the address book
;; Effect: changes the value of address-book by adding a new entry
(define (add-to-address-book who phone)
    (begin
         (set!  address-book

    (cons (make-entry who phone) address-book))
         true) )
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Lambda
How do lambda & define differ?

;; times3: number -> number
(define (times3 x)
    (* 3 x))

• Creates a function that multiplies
   its input by three

• Associates that function with the
  Scheme object “times3”

;; same function, no name
(lambda (x) (* 3 x))

• Creates an anonymous function
  that multiplies its input by three

;; times3: number -> number
(define times3
     (lambda (x) (* 3 x)) )

• Binds the anonymous function to
  the Scheme object “times3”


