
COMP 210, Spring 2002 1

Administrative Notes
Homework 9
• Six days left
• Eight subparts
• If you haven’t started, you are late

• John talked about “shared”
→ Single copy of an object with multiple references to it
→ Could not see this in “beginner” Scheme
→ Reads like a local, with invented names

COMP 210, Spring 2002 2

Accumulators on trees
Version derived from the methodology

;; largest: bnt -> number
;; Purpose: return the largest number in the bnt, or zero if
;; the bnt is empty
(define (largest abnt)
 (cond
 [(empty? abnt) 0]
 [(bnt? abnt) (max (bnt-num abnt)

 (largest (bnt-left abnt))
 (largest (bnt-right abnt)))]

))

COMP 210, Spring 2002 3

Accumulators on trees
Accumulator version

(define (largest abnt)
 (local [;; acc holds largest number seen in nodes visited so far

(define (lhelper atree acc)
 (cond [(empty? atree) acc]

[else (lhelper (bnt-left atree)
 (lhelper (bnt-right atree)

 (max (bnt-num atree) acc)))]
))]
 (lhelper abnt -1)))

Which is faster? ⇒ Dr. Scheme !

COMP 210, Spring 2002 4

Moving on
How did we get to this point in the course?
• Remember JetSet Air?
• Remember find-flights?

COMP 210, Spring 2002 5

Find-flights, take 2

;; find-flights: city city route-map list of city � list of city
;; Purpose: create a path of flights from start to finish or return
;; empty
(define (find-flights start finish rm visited)
 (cond
 [(symbol=? start finish) (list start)]
 [(memq start visited) empty] ;; cut off this search path
 [else

(local [(define possible-route
 (find-flights-for-list (direct-cities start rm) finish

 rm (cons start visited)))]
 (cond

 [(empty? possible-route) empty]
 [else (cons start possible-route)]))]))

COMP 210, Spring 2002 6

Find-flights, take 2

;; find-flights-for-list: list-of-city city route-map list of city
;; � list-of-city
;; Purpose: finds a flight route from some city in the input list to the
;; destination, or returns empty if no such route can be found.
(define (find-flights-for-list aloc finish rm visited)
 (cond
 [(empty? aloc) empty]
 [else
(local [(define possible-route

 (find-flights (first aloc) finish rm visited))]
 (cond

 [(boolean? possible-route)
 (find-flights-for-list (rest aloc) finish rm visited)]
 [else possible-route]))]))

COMP 210, Spring 2002 7

So, what is ”visited”?
• We used “visited” to accumulate information

→ Gathered over course of computation
→ Used to ensure correct behavior

• We call such a parameter an accumulator

The Downside
• To let find-flights handle cycles, we changed its contract
• Can we avoid this? Sure …

→ Wrap it up in a local
→ We should hide direct-cities & find-flights-from-list, too

COMP 210, Spring 2002 8

Find-flights —the last version

;; find-flights: city city route-map � list of city
;; Purpose: create a path of flights from start to finish or return
;; empty
(define (find-flights start finish rm)
 (local [(define (direct-cities from rm) ;; as before

 …)
(define (ffh start finish rm visited) ;; accumulator version
 …)
(define (ffflh aloc finish rm visited) ;; accumulator version
 …)]

 (ffh start finish rm empty)
))

High-level overview

This has original interface, guarantees right initial value to visited

COMP 210, Spring 2002 9

Moving on
How did we get to this point in the course?
• Remember JetSet Air?
• Remember find-flights?

What happens if they succeed?
• Number of queries to server grows
• Number of people flying Houston to Nashville grows
• Much time spent computing known routes

There ought to be a better way
• Preserve the answers we have already computed

COMP 210, Spring 2002 10

Teaching find-flights to “remember”
Sounds like a job for an accumulator
• Accumulators build up context and pass it along
• Can we formulate this problem with an accumulator?

No.
• Accumulator only has value during one chain of calls

→ During one query to find-flights
• We need to keep the value(s) across multiple queries
We need something new

COMP 210, Spring 2002 11

Memo functions
Abstract the problem
• Find-flights is too big for us to rewrite it 10 times
• Let’s work with a simple algebraic function

Build a version of f that remembers
• Record arguments and results
• Check the record before calling g again

;; f: number -> number
(define (f x)
 (g (* x x)) What is g?

We don’t need to care

COMP 210, Spring 2002 12

Memo functions
Need a representation for the results

Now,
• Need a new version of f that looks in the table

→ Returns answer from table if it is found
→ Computes and records answer if it is not found

;; a result is
;; (make-result arg answer)
;; where arg and answer are numbers
(define-struct result (arg answer))

;; table is a list of result
;; We will use Scheme’s built-in constructor for the list
(define table empty)

COMP 210, Spring 2002 13

Memo functions
Rewriting f

;; f: number -> number
;; Purpose: invoke mystery function g on x squared
(define (f x)
 (local [(define prev-result (lookup x table))]
 (cond
 [(number? prev-result) prev-result]
 [else
 (local [(define new-result (g (* x x)))]

 (begin
;; store new-result in table
result))]

)))

COMP 210, Spring 2002 14

Memo functions
Rewriting f

In concept, this should work, but

;; lookup: number list-of-result -> number or false
;; Purpose: returns answer if it is stored in the table, or
;; false if it is not in the table
(define (lookup arg table)
 (local [(define answers
 (filter (lambda(try)(= arg (result-arg try)))

 table))]
 (cond

 [(empty? answers) false]
 [else (result-answer (first answers))]

)))

COMP 210, Spring 2002 15

Memo functions
Rewriting f

;; f: number -> number
;; Purpose: invoke mystery function g on x squared
(define (f x)
 (local [(define prev-result (lookup x table))]
 (cond
 [(number? prev-result) prev-result]
 [else
 (local [(define new-result (g (* x x)))]

 (begin
;; store new-result in table
result))]

)))
What is this?

COMP 210, Spring 2002 16

Memo functions
Need a way to add a result to table
• We have seen nothing in Scheme that does this
• Need a new Scheme construct

• Creates a new result and puts it add the head of the list
• Makes table refer to that list

;; set! takes 2 arguments, an object & an expression
;; It changes the definition of the object to refer to the
;; value produced by evaluating the expression
(set! table (cons (make-result x new-result) table))

COMP 210, Spring 2002 17

Memo functions
Now, f looks like

;; f: number -> number
;; Purpose: invoke mystery function g on x squared
(define (f x)
 (local [(define prev-result (lookup x table))]
 (cond
 [(number? prev-result) prev-result]
 [else
 (local [(define new-result (g (* x x)))]

 (begin
(set! table (cons (make-result x new-result) table))
result))]

)))

COMP 210, Spring 2002 18

Memo functions
Set! disrupts our model of the world
• This version of f gives the same answers as the old one
• This version computes them in a different way

Before set! the rewriting semantics was simple
• Expression evaluation did not depend on prior results
• With set!, it depends on prior results in a critical way

> (f 2)
37
> (f 3)
77
> (f 2)
37

It did not compute (g 4) this time.
It found the answer in table

COMP 210, Spring 2002 19

Memo functions
Thinking about COMP 210 philosophy
• If set! makes such a momentous difference in our execution

model, should we use it?
→ Yes, but with some caution
→ We should demarcate its use with a comment

• What’s with the exclamation point
→ It demarcates set!

• Shouldn’t we hide table and lookup?
→ Of course

• Why do all these slides keep saying “Memo functions”
→ This technique is called a memo-function implementation

COMP 210, Spring 2002 20

Information hiding
We should hide table & lookup in a local
• Where do we define table?

;; f: number -> number
(define (f x)
 (local [(define prev-result (lookup x table))]
 (cond
 [(number? prev-result) prev-result]
 [else (local [(define table empty)

 (define new-result (g (* x x)))]
 (begin

(set! table (cons (make-result x new-result) table))
result))]

)))

This cannot
work

COMP 210, Spring 2002 21

Information hiding
We should hide table & lookup in a local

;; f: number -> number
(define (f x)
 (local [(define table empty)

(define prev-result (lookup x table))]
 (cond
 [(number? prev-result) prev-result]
 [else (local [(define new-result (g (* x x)))]

 (begin
(set! table (cons (make-result x new-result) table))
result))]

)))

This will never work. Each call to f creates a new table.
It cannot possible remember results of earlier computations!

COMP 210, Spring 2002 22

Information hiding
We need a local that survives across invocations

;; f: number -> number
(define f
 (local [(define table empty)]
 (lambda(x)
 (local [(define prev-result (lookup x table))]
 (cond

 [(number? prev-result) prev-result]
 [else (local [(define new-result (g (* x x)))]

 (begin
(set! table (cons (make-result x new-result) table))
result))]

)))
)
)

Defines f, not (f x)

Result of the local is a function

Function can see table
because of local’s rewriting
rules. (Nothing outside the
function can see it!)

Net result: f is a function with hidden, persistent state
stored in the object table

COMP 210, Spring 2002 23

Information hiding
We need a local that survives across invocations

;; f: number -> number
(define f
 (local [(define table empty)]
 (lambda(x)
 (local [(define prev-result (lookup x table))]
 (cond

 [(number? prev-result) prev-result]
 [else (local [(define new-result (g (* x x)))]

 (begin
(set! table (cons (make-result x new-result) table))
result))]

)))
)
)

WHAT?

COMP 210, Spring 2002 24

Information hiding
We need a local that survives across invocations

;; f: number -> number
(define f
 (local [(define table empty)]
 (lambda(x)
 (local [(define prev-result (lookup x table))]
 (cond

 [(number? prev-result) prev-result]
 [else (local [(define new-result (g (* x x)))]

 (begin
(set! table (cons (make-result x new-result) table))
result))]

)))
)
)

See lecture 22, slide 6

COMP 210, Spring 2002 25

Lambda
How do lambda & define differ?

;; times3: number -> number
(define (times3 x)
 (* 3 x))

• Creates a function that multiplies
 its input by three

• Associates that function with the
 Scheme object “times3”

;; same function, no name
(lambda (x) (* 3 x))

• Creates an anonymous function
 that multiplies its input by three

;; times3: number -> number
(define times3
 (lambda (x) (* 3 x)))

• Binds the anonymous function to
 the Scheme object “times3”

