
COMP 210, Spring 2002 1

Administrative Notes
Homework 9
• Eight days left
• Eight subparts
• If you haven’t started, you need to start now

COMP 210, Spring 2002 2

A Final Word on maxacc
We’ve seen so many versions of max
• Exponential version
• Linear version that introduced local
• Accumulator version
• Version on binary trees from the test

COMP 210, Spring 2002 3

Variants of max

;; max1: nelon -> number
(define (max1 anelon)
 (cond
 [(empty? (rest anelon)) (first anelon)]
 [(cons? (rest anelon))
 (local [(define maxrest (max1 (rest anelon)))
 (define thisone (first anelon))]
 (cond
 [(<= thisone maxrest) maxrest]
 [else thisone]
))]
))

 The linear version based on local

COMP 210, Spring 2002 4

Variants of max

;; max2: list -> number
(define (max2 anelon)
 (local [(define (maxacc anelon acc)
 (cond
 [(empty? anelon) acc]
 [(cons? anelon)
 (cond
 [(<= acc (first anelon))
 (maxacc (rest anelon) (first anelon))]
 [else (maxacc (rest anelon) acc)])]
))]
 (maxacc anelon -1))) ;; empty list returns -1

The accumulator version

COMP 210, Spring 2002 5

Variants of max

;; max3: list -> number
(define (max3 anelon)
 (cond
 [(empty? anelon) -1]
 [(cons? anelon) (max (first anelon) (max3 (rest anelon)))]
))

Version derived from the test

• Uses max to encapsulate the comparison & decision
• Avoids the creation of maxrest by using a function argument

 This looks so much simpler
• Why not write it this way? (are accumulators a waste of effort?)

(define (max n1 n2)
 (cond
 [(> n1 n2) n2]
 [else n1]
))

COMP 210, Spring 2002 6

Variants of max
We can time these versions of max (list of 1 to 10,000)
• Max-local: range 1,183 milliseconds to 1,984 milliseconds
• Max-acc: range 150 to 167 milliseconds
• Max-max: range from 350 to 884 milliseconds

The lessons:
• Differences in execution time are noticeable

→ Order of magnitude between best & worst “linear” max
• Variations are due to DrScheme’s memory state
• Comparing best time against best time

→ Max-acc is 1/2 max-max and 1/8 max-local !

COMP 210, Spring 2002 7

Accumulators on trees
What about largest from the test?
• Found the largest number in a binary tree

;; a bnt (binary number tree) is either
;; — empty, or
;; — (make-bnt num left right) where left & right are bnts
(define-struct bnt (num left right))

;; template …
(define (f abnt …)
 (cond
 [(empty? abnt) …]
 [(bnt? abnt) … (bnt-num abnt) …

 … (f (bnt-left abnt) …) …
 … (f (bnt-right abnt) …) …]

))

COMP 210, Spring 2002 8

Accumulators on trees
Filling in the template for largest

;; largest: bnt -> number
;; Purpose: return the largest number in the bnt, or zero if
;; the bnt is empty
(define (largest abnt)
 (cond
 [(empty? abnt) 0]
 [(bnt? abnt) (max (bnt-num abnt)

 (largest (bnt-left abnt))
 (largest (bnt-right abnt)))]

))

This is the answer I was expecting

It works.

COMP 210, Spring 2002 9

Accumulators on trees
Can we make it faster using an accumulator?
• What does an accumulator on a tree do?
• What does the code look like?
• Does it help?

Start with structural version
• See last slide
• Write down the accumulator template

COMP 210, Spring 2002 10

Accumulators on trees
Accumulator template for bnt

(define (largest abnt)
 (local [;; acc holds …

(define (lhelper atree acc)
 (cond [(empty? atree) …]

[else … (lhelper … (bnt-left atree) …
 … (bnt-num atree) … acc …)
 (lhelper … (bnt-right atree) …

 … (bnt-num atree) … acc …) …]
))]
 (lhelper abnt …)))

What happened in the else clause of lhelper ?
• Need two calls for two subtrees
• Need some way to combine the results

COMP 210, Spring 2002 11

Accumulators on trees
Filling in the template

(define (largest abnt)
 (local [;; acc holds largest number seen in nodes visited so far

(define (lhelper atree acc)
 (cond [(empty? atree) …]

[else … (lhelper … (bnt-left atree) …
 … (bnt-num atree) … acc …)
 (lhelper … (bnt-right atree) …

 … (bnt-num atree) … acc …) …]
))]
 (lhelper abnt …)))

COMP 210, Spring 2002 12

Accumulators on trees
Filling in the template

(define (largest abnt)
 (local [;; acc holds largest number seen in nodes visited so far

(define (lhelper atree acc)
 (cond [(empty? atree) acc]

[else … (lhelper … (bnt-left atree) …
 … (bnt-num atree) … acc …)
 (lhelper … (bnt-right atree) …

 … (bnt-num atree) … acc …) …]
))]
 (lhelper abnt …)))

COMP 210, Spring 2002 13

Accumulators on trees
Filling in the template

(define (largest abnt)
 (local [;; acc holds largest number seen in nodes visited so far

(define (lhelper atree acc)
 (cond [(empty? atree) acc]

[else (max (lhelper (bnt-left atree)
 (max (bnt-num atree) acc))
 (lhelper (bnt-right atree)

 (max (bnt-num atree) acc)))]
))]
 (lhelper abnt -1)))

This works. Is it what we want?

 It leaves behind the kind of left context (the outer max) that
we tried to avoid by introducing accumulators (not tail-recursive!)

COMP 210, Spring 2002 14

Accumulators on trees
How do we avoid the dreaded pending context?
• We can thread the tree

→ Work 2nd recursive call into computation of accumulator
for the 1st recursive call

→ Complex notion
→ Replace (max (bnt-num atree) acc) with

(lhelper (bnt-right atree) (max (bnt-num atree) acc))

COMP 210, Spring 2002 15

Accumulators on trees
Filling in the template

(define (largest abnt)
 (local [;; acc holds largest number seen in nodes visited so far

(define (lhelper atree acc)
 (cond [(empty? atree) acc]

[else (lhelper (bnt-left atree)
 (lhelper (bnt-right atree)

 (max (bnt-num atree) acc)))]
))]
 (lhelper abnt -1)))

This works. It has no pending left context!

What did it do?

COMP 210, Spring 2002 16

Accumulators on trees
Threading the tree

(define TestBnt
 (make-bnt 12
 (make-bnt 5 empty empty)
 (make-bnt 2
 (make-bnt 1 empty empty)
 (make-bnt 4 empty empty)))

12

5 2

41

Is this any faster than the version from the template?
• Need some large test trees to find out
• Need a program for generating them
• Maybe next class …

