
COMP 210, Spring 2002 1

Administrative Notes
Exam
• Solutions will be posted today or tomorrow
• Look at the solutions

Homework 9 (Ex. 32.2.1 — 32.2.8 in book)
• Due Wednesday, April 10, 2002 in class
• Do one sub-problem each day and you will finish early
• Procrastinate and you will not finish

Labs this week as normal
• Challenge lab?

COMP 210, Spring 2002 2

COMP 210, Spring 2002, Second Exam

0

1 0

2 0

3 0

4 0

5 0

6 0

7 0

8 0

9 0

100

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 2 0 2 1 2 2 2 3 2 4 2 5 2 6 2 7 2 8 2 9 3 0 3 1 3 2 3 3 3 4 3 5 3 6 3 7 3 8 3 9

Average: 76.2
Max: 96, Min: 26
Std deviation: 16.6

COMP 210, Spring 2002 3

Finishing up accumulators
The example with reverse was tortured (my fault)
• Can we write another classic program with an accumulator?

→ Let’s try max, one of our favorite examples

;; maxacc: nelon -> number
;; Purpose: returns the largest entry in a non-empty list of numbers
(define (maxacc anelon) …)

;; a non-empty-list-of-number (nelon) is either
;; — (cons f r) where f is a number and r is empty, or
;; — (cons f r) where f is a number and r is a nelon
;; We will use Scheme’s built-in list constructor to implement nelons

COMP 210, Spring 2002 4

Finishing up accumulators
Max, again

How do we proceed?
• With an accumulator, can pass along largest element so far
• What does helper do?

;; maxacc: nelon -> number
;; Purpose: returns the largest entry in a non-empty list of numbers
(define (maxacc anelon) …)

;; maxh: nelon number -> number
;; Purpose: returns the larger of acc and (max-of-list anelon)
;; acc holds the largest element seen so far
(define (maxh anelon acc) …)

COMP 210, Spring 2002 5

Finishing up accumulators
Focusing on maxh

;; maxh: nelon number -> number
;; Purpose: returns the larger of acc and (max-of-list anelon)
(define (maxh anelon acc)
 (cond
 [(empty? anelon) acc]
 [(> (first anelon) acc) (maxh (rest anelon) (first anelon))]
 [(else (maxh (rest anelon) acc)]
))

COMP 210, Spring 2002 6

Finishing up accumulators
Focusing on maxh

But wait
• Maxh tests (empty? anelon)
• How can a nelon be empty?
• We subtly changed the problem & the contract

;; maxh: nelon number -> number
;; Purpose: returns the larger of acc and (max-of-list anelon)
(define (maxacc anelon acc)
 (cond
 [(empty? anelon) acc]
 [(> (first anelon) acc) (maxh (rest anelon) (first anelon))]
 [(else (maxh (rest anelon) acc)]
))

COMP 210, Spring 2002 7

Finishing up accumulators
Maxh operates on a list

Now, …
• maxacc takes a nelon & uses (first anelon) as initial accum’r
• maxh takes a list & returns a number

→ Uses (empty? alon) test to return accumulator value

;; maxh: alon number -> number
;; Purpose: returns the larger of acc and (max-of-list alon)
(define (maxh alon acc)
 (cond
 [(empty? alon) acc]
 [(cons? alon)
 (cond
 [(> (first alon) acc) (maxh (rest alon) (first alon))]
 [else (maxh (rest alon) acc)])]
))

COMP 210, Spring 2002 8

Finishing up accumulators
Putting it together

;; maxacc: nelon -> number
;; Purpose: returns the largest entry in a non-empty list of numbers
(define (maxacc anelon)
 (cond
 [(empty? (rest anelon)) (first anelon)]
 [(cons? (rest anelon))
 (local
 [;; maxh: alon number -> number

;; Purpose: returns the larger of acc and (max-of-list anelon)
(define (maxh alon acc)
 (cond
 [(empty? alon) acc]
 [(> (first alon) acc) (maxh (rest alon) (first alon))]
 [(else (maxh (rest alon) acc)]))]

 (maxh (rest anelon) (first anelon)))]
))

COMP 210, Spring 2002 9

Finishing up accumulators
An aside
• We can think of this example as a template for accumulator

programs over lists

;; f : list of alpha -> beta
(define (f alist)
 (local [;; acc holds …

;; g : alist -> beta
;; Purpose: g does something good
(define (g alist acc)
 (cond
 [(empty? alist) …]
 [(cons? alist)

… (g (rest alist)
 … (first alist)

 … acc)]))]
 (g alist …)]))

This being 210, you need a comment that
explains the accumulator’s contents

Need to figure out what
the accumulator holds, and
how to use it in g

COMP 210, Spring 2002 10

Finishing up accumulators
What’s the point?
• Old version of max worked

→ Used local to make it run in linear time (rather than 2N)

;; maxclassic: nelon -> number
;; Purpose: rehash max, again
(define (maxclassic anelon)
 (cond
 [(empty? (rest anelon)) (first anelon)]
 [(cons? (rest anelon))
 (local [(define maxrest (maxclassic (rest anelon)))]
 (cond
 [(> (first anelon) maxrest) (first anelon)]
 [else maxrest]
))]
))

COMP 210, Spring 2002 11

Finishing up accumulators
What’s the point?
• Old version of max worked

→ Used local to make it run in linear time (rather than 2N)
• Does maxacc differ from maxclassic in any useful way

→ Consider their behavior on (list 1 2 3 4)

This is a point I tried to make with reverse last class
Using the stepper made it particularly hard to see the point

COMP 210, Spring 2002 12

Finishing up accumulators
Consider the evaluation of each function
(maxclassic (list 1 2 3 4))

⇒ defines maxrest0 as (maxclassic (list 2 3 4)
⇒ defines maxrest1 as (maxclassic (list 3 4))

⇒ defines maxrest2 as (maxclassic (list 4))
⇒ This returns 4

⇒ evaluates the cond and returns 4
⇒ evaluates the cond and returns 4

⇒ evaluates the cond and returns 4

COMP 210, Spring 2002 13

Finishing up accumulators
Consider the evaluation of each function
(maxacc (list 1 2 3 4))

⇒ finds (rest anelon) is non-empty & enters local
⇒ evaluates (maxh (list 2 3 4) 1)

⇒ evaluates (maxh (list 3 4) 2)
⇒ evaluates (maxh (list 4) 3)

⇒ evaluates (maxh empty 4) & returns 4
⇒ returns 4

⇒ returns 4
⇒ returns 4

What’s the difference?

COMP 210, Spring 2002 14

Finishing up accumulators
Consider the evaluation of each function
(maxclassic (list 1 2 3 4))

⇒ defines maxrest0 as (maxclassic (list 2 3 4)
⇒ defines maxrest1 as (maxclassic (list 3 4))

⇒ defines maxrest2 as (maxclassic (list 4))
⇒ This returns 4

⇒ evaluates the cond and returns 4
⇒ evaluates the cond and returns 4

⇒ evaluates the cond and returns 4

This context involves
further evaluation

Scheme has lots of pending context after the recursive call

COMP 210, Spring 2002 15

Finishing up accumulators
Consider the evaluation of each function
(maxacc (list 1 2 3 4))

⇒ finds (rest anelon) is non-empty & enters local
⇒ evaluates (maxacc (list 2 3 4) 1)

⇒ evaluates (maxacc (list 3 4) 2)
⇒ evaluates (maxacc (list 4) 3)

⇒ evaluates (maxacc empty 4) & returns 4
⇒ returns 4

⇒ returns 4
⇒ returns 4

Scheme has (almost) no context after the call

This context just
returns the value

COMP 210, Spring 2002 16

Finishing up accumulators
Does this matter?
• In large evaluations, that extra context adds up
• Takes space (in DrScheme) and time
• Can become a source of inefficiency

Tail recursion
• A tail-recursion returns the value of a self-recursive call

→ No further computation
• This is a particularly efficient form of recursion

→ Most translators (like DrScheme) optimize for this case

COMP 210, Spring 2002 17

Finishing up accumulators
Another use for accumulators
• We can use an accumulator to transform a program into tail-

recursive form
• This is an efficiency hack

→ But can be an important one

