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Administrative Notes
Exam
• Solutions will be posted today or tomorrow
• Look at the solutions

Homework 9          (Ex. 32.2.1 — 32.2.8 in book)
• Due Wednesday, April 10, 2002 in class
• Do one sub-problem each day and you will finish early
• Procrastinate and you will not finish

Labs this week as normal
• Challenge lab?

COMP 210, Spring 2002 2

COMP 210, Spring 2002, Second Exam
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Finishing up accumulators
The example with reverse was tortured (my fault)
• Can we write another classic program with an accumulator?

→ Let’s try max, one of our favorite examples

;; maxacc: nelon -> number
;; Purpose: returns the largest entry in a non-empty list of numbers
(define (maxacc anelon) … )

;; a non-empty-list-of-number (nelon) is either
;;   — (cons f r) where f is a number and r is empty, or
;;   — (cons f r) where f is a number and r is a nelon
;; We will use Scheme’s built-in list constructor to implement nelons
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Finishing up accumulators
Max, again

How do we proceed?
• With an accumulator, can pass along largest element so far
• What does helper do?

;; maxacc: nelon -> number
;; Purpose: returns the largest entry in a non-empty list of numbers
(define (maxacc anelon) … )

;; maxh: nelon number -> number
;; Purpose: returns the larger of acc and (max-of-list anelon)
;; acc holds the largest element seen so far
(define (maxh anelon acc) … )
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Finishing up accumulators
Focusing on maxh

;; maxh: nelon number -> number
;; Purpose: returns the larger of acc and (max-of-list anelon)
(define (maxh anelon acc)
   (cond
       [(empty? anelon) acc]
       [(> (first anelon) acc)  (maxh (rest anelon) (first anelon))]
       [(else  (maxh (rest anelon) acc)]
   ))
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Finishing up accumulators
Focusing on maxh

But wait
• Maxh tests (empty? anelon)
• How can a nelon be empty?
• We subtly changed the problem & the contract

;; maxh: nelon number -> number
;; Purpose: returns the larger of acc and (max-of-list anelon)
(define (maxacc anelon acc)
   (cond
       [(empty? anelon) acc]
       [(> (first anelon) acc)  (maxh (rest anelon) (first anelon))]
       [(else  (maxh (rest anelon) acc)]
   ))
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Finishing up accumulators
Maxh operates on a list

Now, …
• maxacc takes a nelon & uses (first anelon) as initial accum’r
• maxh takes a list & returns a number

→ Uses (empty? alon) test to return accumulator value

;; maxh: alon number -> number
;; Purpose: returns the larger of acc and (max-of-list alon)
(define (maxh alon acc)
   (cond
       [(empty? alon) acc]
       [(cons? alon)
        (cond
            [(> (first alon) acc)  (maxh (rest alon) (first alon))]
            [else  (maxh (rest alon) acc)]    )]
   ))
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Finishing up accumulators
Putting it together

;; maxacc: nelon -> number
;; Purpose: returns the largest entry in a non-empty list of numbers
(define (maxacc anelon)
   (cond
       [(empty? (rest anelon))  (first anelon)]
       [(cons?   (rest anelon))
         (local
            [ ;; maxh: alon number -> number

;; Purpose: returns the larger of acc and (max-of-list anelon)
(define (maxh alon acc)
   (cond
       [(empty? alon) acc]
       [(> (first alon) acc)  (maxh (rest alon) (first alon))]
       [(else  (maxh (rest alon) acc)] ))]

            (maxh (rest anelon) (first anelon)) )]
     ) )
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Finishing up accumulators
An aside
• We can think of this example as a template for accumulator

programs over lists

;; f :  list of alpha -> beta
(define (f alist)
    (local [;; acc holds …

;; g : alist  -> beta
;; Purpose: g does something good
(define (g alist acc)
   (cond
       [(empty? alist) …]
       [(cons? alist)

… (g   (rest alist)
      … (first alist)

                                   … acc )        ])) ]
            (g  alist … )]      ) )

This being 210, you need a comment that
explains the accumulator’s contents

Need to figure out what
the accumulator holds, and
how to use it in g

COMP 210, Spring 2002 10

Finishing up accumulators
What’s the point?
• Old version of max worked

→ Used local to make it run in linear time (rather than 2N)

;; maxclassic: nelon -> number
;; Purpose: rehash max, again
(define (maxclassic anelon)
  (cond
    [(empty? (rest anelon)) (first anelon)]
    [(cons?  (rest anelon))
     (local [(define maxrest (maxclassic (rest anelon)))]
       (cond
         [(> (first anelon) maxrest) (first anelon)]
         [else maxrest]
         ))]
    ))
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Finishing up accumulators
What’s the point?
• Old version of max worked

→ Used local to make it run in linear time (rather than 2N)
• Does maxacc differ from maxclassic in any useful way

→ Consider their behavior on (list 1 2 3 4)

This is a point I tried to make with reverse last class
Using the stepper made it particularly hard to see the point
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Finishing up accumulators
Consider the evaluation of each function
(maxclassic (list 1 2 3 4))

⇒  defines maxrest0 as (maxclassic (list 2 3 4)
⇒  defines maxrest1 as (maxclassic (list 3 4))

⇒  defines maxrest2 as (maxclassic (list 4))
⇒ This returns 4

⇒  evaluates the cond and returns 4
⇒  evaluates the cond and returns 4

⇒  evaluates the cond and returns 4
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Finishing up accumulators
Consider the evaluation of each function
(maxacc (list 1 2 3 4))

⇒  finds (rest anelon) is non-empty & enters local
⇒  evaluates (maxh (list 2 3 4) 1)

⇒  evaluates (maxh (list 3 4) 2)
⇒  evaluates (maxh (list 4) 3)

⇒  evaluates (maxh empty 4) & returns 4
⇒  returns 4

⇒  returns 4
⇒  returns 4

What’s the difference?
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Finishing up accumulators
Consider the evaluation of each function
(maxclassic (list 1 2 3 4))

⇒  defines maxrest0 as (maxclassic (list 2 3 4)
⇒  defines maxrest1 as (maxclassic (list 3 4))

⇒  defines maxrest2 as (maxclassic (list 4))
⇒ This returns 4

⇒  evaluates the cond and returns 4
⇒  evaluates the cond and returns 4

⇒  evaluates the cond and returns 4

This context involves
further evaluation

Scheme has lots of pending context after the recursive call
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Finishing up accumulators
Consider the evaluation of each function
(maxacc (list 1 2 3 4))

⇒  finds (rest anelon) is non-empty & enters local
⇒  evaluates (maxacc (list 2 3 4) 1)

⇒  evaluates (maxacc (list 3 4) 2)
⇒  evaluates (maxacc (list 4) 3)

⇒  evaluates (maxacc empty 4) & returns 4
⇒  returns 4

⇒  returns 4
⇒  returns 4

Scheme has (almost) no context after the call

This context just
returns the value
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Finishing up accumulators
Does this matter?
• In large evaluations, that extra context adds up
• Takes space (in DrScheme) and time
• Can become a source of inefficiency

Tail recursion
• A tail-recursion returns the value of a self-recursive call

→ No further computation
• This is a particularly efficient form of recursion

→ Most translators (like DrScheme) optimize for this case
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Finishing up accumulators
Another use for accumulators
• We can use an accumulator to transform a program into tail-

recursive form
• This is an efficiency hack

→ But can be an important one


