
COMP 210, Spring 2002 1

Administrative Notes
Exam
• Most of them are graded
• Available tomorrow morning outside my door (DH 2065)

• Solutions will be available on web site

Homework 9 (Ex. 32.2.1 — 32.2.8 in book)
• Due Wednesday, April 10, 2002 in class
• 8 sub-problems
• Do them one a day and you will finish early
• Procrastinate and you will not finish

COMP 210, Spring 2002 2

Graph Problems
Definition of a route map

→ Instance of a mathematical construct called a graph

;; a city is a symbol

;; The information for a city is a structure
;; (make-city-info name dests)
;; where name is a city and dests is a list of cities
(define-struct city-info (name dests))

;; a route-map is a list of city-info
;; We will use Scheme’s built-in implementation of lists

COMP 210, Spring 2002 3

Graph Problems
;; Example Route Map
(define routes
 (list (make-city-info ‘Houston (list ‘Dallas ‘NewOrleans))

(make-city-info ‘Dallas (list ‘LittleRock ‘Memphis))
(make-city-info ‘NewOrleans (list ‘Memphis))
(make-city-info ‘Memphis (list ‘Nashville))

))

New Orleans

Memphis

NashvilleLittle Rock

Dallas

Houston

COMP 210, Spring 2002 4

Graph Problems
Developed a program find-flights

→ It used direct-cities to find neighbors in the route map

;; direct-cities : city route-map -> list of city
;; Purpose: find the cities reached by direct flights from the argument
(define (direct-cities from rm)
 (local [(define from-dests
 (filter (lambda (city)(symbol=? (city-info-name city) from)) rm))]
 (cond

[(empty? from-dests) empty]
[else (city-info-dests (first from-dests))])

))

(direct-cities ‘Houston routes) ⇒ (list ‘Dallas ‘NewOrleans)

COMP 210, Spring 2002 5

Graph Problems
Program find-flights to deal with city-info

;; find-flights: city city route-map -> list of city
;; Purpose: find a flight in rm from start to finish
(define (find-flights start finish rm)
 (cond
 [(symbol=? start finish) (list start)] ;; trivial case
 [else (local [(define possible-route

(find-flights-for-list (direct-cities start rm) finish rm))]
 (cond [(empty? possible-route) empty]

 [else (cons start possible-route)]))]
))

Uses find-flights-for-list
to handle a list-of-city

(find-flights ‘Houston ‘LittleRock routes)
⇒ (list ‘Houston ‘Dallas ‘LittleRock)

COMP 210, Spring 2002 6

Routine find-flights-from-list to deal with list-of-city

Graph Problems

;; find-flights-for-list: list-of-city city route-map -> list of city
;; Purpose: finds a route from some city in the argument list to the
;; city given as the singleton argument, using the route map
(define (find-flights-for-list aloc finish rm)
 (cond
 [(empty? aloc) empty]
 [else
 (local [(define one-route (find-flights (first aloc) finish rm))]
 (cond

 [(empty? one-route) (find-flights-for-list (rest aloc) finish rm)]
 [else one-route]))]

))

COMP 210, Spring 2002 7

Find-flights
What happens if we add a cycle?
• Add a Dallas to Houston flight
• Now, (find-flights ‘Houston ‘Nashville new-routes) recurs

indefinitely. (almost always a bad thing)

COMP 210, Spring 2002 8

Graph Problems
(define new-routes
 (list (make-city-info ‘Houston (list ‘Dallas ‘NewOrleans))

(make-city-info ‘Dallas (list ‘Houston ‘LittleRock ‘Memphis))
(make-city-info ‘NewOrleans (list ‘Memphis))
(make-city-info ‘Memphis (list ‘Nashville))

))

New Orleans

Memphis

NashvilleLittle Rock

Dallas

Houston

new flight

COMP 210, Spring 2002 9

Graph Problems
(find-flights ‘Houston ‘LittleRock new-routes)

→ visits Dallas
→ visits Houston
→ visits Dallas
→ visits Houston, and so on …

New Orleans

Memphis

NashvilleLittle Rock

Dallas

Houston

COMP 210, Spring 2002 10

Find-flights
What happens if we add a cycle?
• Add a Dallas to Houston flight
• Now, (find-flights ‘Houston ‘Nashville new-routes) recurs

indefinitely. (almost always a bad thing)

What’s the real problem?
• Find-flights and find-flights-for-list have no history

→ Those who ignore the past are doomed to repeat it
• Need to give them some institutional memory

→ Add a parameter that contains cities already tested

COMP 210, Spring 2002 11

Find-flights, take 2

;; find-flights: city city route-map list of city � list of city
;; Purpose: create a path of flights from start to finish or return
;; empty
(define (find-flights start finish rm visited)
 (cond
 [(symbol=? start finish) (list start)]
 [(memq start visited) empty] ;; cut off this search path
 [else

(local [(define possible-route
 (find-flights-for-list (direct-cities start rm) finish

 rm (cons start visited)))]
 (cond

 [(empty? possible-route) empty]
 [else (cons start possible-route)]))]))

COMP 210, Spring 2002 12

Find-flights, take 2

;; find-flights-for-list: list-of-city city route-map list of city
;; � list-of-city
;; Purpose: finds a flight route from some city in the input list to the
;; destination, or returns empty if no such route can be found.
(define (find-flights-for-list aloc finish rm visited)
 (cond
 [(empty? aloc) empty]
 [else
(local [(define possible-route

 (find-flights (first aloc) finish rm visited))]
 (cond

 [(boolean? possible-route)
 (find-flights-for-list (rest aloc) finish rm visited)]
 [else possible-route]))]))

COMP 210, Spring 2002 13

So, what is ”visited”?
• We used “visited” to accumulate information

→ Gathered over course of computation
→ Used to ensure correct behavior

• We call such a parameter an accumulator

The Downside
• To let find-flights handle cycles, we changed its contract
• Can we avoid this? Sure …

→ Wrap it up in a local
→ We should hide direct-cities & find-flights-from-list, too

COMP 210, Spring 2002 14

Find-flights —the last version

;; find-flights: city city route-map � list of city
;; Purpose: create a path of flights from start to finish or return
;; empty
(define (find-flights start finish rm)
 (local [(define (direct-cities from rm) ;; as before

 …)
(define (ffh start finish rm visited) ;; accumulator version
 …)
(define (ffflh aloc finish rm visited) ;; accumulator version
 …)]

 (ffh start finish rm empty)
))

High-level overview

This has original interface, guarantees right initial value to visited

COMP 210, Spring 2002 15

Another Example
Reverse
• Simple programming problem
• Develop a program that consumes a list and produces a list

containing the same elements, in reverse order

(reverse (list 1 2 3 4 5 6 7 8 9 10))
⇒ (list 10 9 8 7 6 5 4 3 2 1)

To begin, let’s write it using structural recursion
→ Start with the classic list template

COMP 210, Spring 2002 16

Reverse
Version based on structural recursion

;; reverse: list of alpha -> list of alpha
;; Purpose: returns a list containing the elements of the argument
;; list, in reverse order
(define (reverse alist)
 (cond
 [(empty? alist) …]
 [(cons? alist)

… (first alist) …
… (reverse (rest alist)) …]

))

Returns list-of-alpha suggests
empty? clause returns empty

What to do with (first alist)
and (reverse (rest alist)) ?

empty]

COMP 210, Spring 2002 17

Reverse
Version based on structural recursion

;; reverse: list of alpha -> list of alpha
;; Purpose: returns a list containing the elements of the argument
;; list, in reverse order
(define (reverse alist)
 (cond
 [(empty? alist) empty]
 [(cons? alist) (append (reverse (rest alist)) (cons (first alist) empty))]
)
)

Use append to paste
sublists together

Make (first alist) into
a list for append …

COMP 210, Spring 2002 18

Reverse
What happens with (reverse (list 1 2 3))?
• Recall the rewriting rules
• Arguments evaluated before program’s body
• Dives down into list and evaluates the end first

*

COMP 210, Spring 2002 19

Reverse
What happens with (reverse (list 1 2 3 4))?

(reverse (list 1 2 3)) ;; look at the calls to add-to-end …
⇒ (append (reverse (list 2 3 4)) (list 1))

⇒ (append (append (reverse (list 3 4)) (list 2)) (list 1))
⇒ (append (append (append (reverse (list 4)) (list 3))

(list 2)) (list 1))
⇒ (append (append (append (append (reverse empty)

(list 4)) (list 3)) (list 2)) (list 1))
⇒ (append (append (append (append empty (list 4))
 (list 3)) (list 2)) (list 1))

⇒ (append (append (append (list 4) (list 3)) (list 2)) (list 1))
⇒ (append (append (list 4 3 (list 2)) (list 1))

⇒ (append (list 4 3 2) (list 1))
⇒ (list 4 3 2 1)

This is a lot of work to reverse a list of three elements

This code is
“rev1” in
lecture26.scm

COMP 210, Spring 2002 20

Reverse
How costly is this?
• Think about what append does

→ Walks down the list, rebuilding it
• Code invokes append for every element in the list
• N elements => N calls to append, each walking down the list

→ First one walks whole list
→ Next one walks list - 1
→ Next one walks list -2

This is a lot of work to reverse a list of three elements

This takes time
proportional to N2

(Quadratic in length of
original list)

COMP 210, Spring 2002 21

Reverse
Can we improve this quadratic behavior?
• Reverse passes result of one recursive call to another

recursive program — a danger signal for performance

What if we used an accumulator?

;; reverse: list of alpha -> list of alpha
;; Purpose: returns a list containing the elements of the argument
;; list, in reverse order
(define (reverse alist)
 (cond
 [(empty? alist) empty]
 [(cons? alist) (append (reverse (rest alist)) (cons (first alist) empty))]
)
)

COMP 210, Spring 2002 22

Reverse
Using an accumulator
• New interface — second parameter is accumulator
• Start from list template

;; revacc: list-of-alpha list-of-alpha -> list-of-alpha
;; Purpose: …
(define (revacc alist acc)
 (cond
 [(empty? alist) …]
 [(cons? alist)
 … (first alist) …

… (revacc (rest alist) …)]
))

Start with cons? clause

Second parameter is acc,
should add (first alist) to it

COMP 210, Spring 2002 23

Reverse
Using an accumulator
• New interface — second parameter is accumulator
• Start from list template

;; revacc: list-of-alpha list-of-alpha -> list-of-alpha
;; Purpose: …
(define (revacc alist acc)
 (cond
 [(empty? alist) …]
 [(cons? alist) (revacc (rest alist) (cons (first alist) acc))]
))

Now, what should empty? case return?

Answer: acc contains the reversed list

COMP 210, Spring 2002 24

Reverse
Using an accumulator
• New interface — second parameter is accumulator
• Start from list template

;; revacc: list-of-alpha list-of-alpha -> list-of-alpha
;; Purpose: …
(define (revacc alist acc)
 (cond
 [(empty? alist) acc]
 [(cons? alist) (revacc (rest alist) (cons (first alist) acc))]
))

1. Does it work? (to DrScheme)
2. How fast? (next slide)

COMP 210, Spring 2002 25

Reverse
Using an accumulator
• New interface — second parameter is accumulator
• Start from list template

;; revacc: list-of-alpha list-of-alpha -> list-of-alpha
;; Purpose: …
(define (revacc alist acc)
 (cond
 [(empty? alist) acc]
 [(cons? alist) (revacc (rest alist) (cons (first alist) acc))]
))

This calls revacc once per list element
⇒ linear rather than quadratic number of calls

Much more
efficient !

COMP 210, Spring 2002 26

Reverse
The last step
• Fix the interface to ensure correct initial value to acc

;; reverse : list-of-alpha -> list-of-alpha
;; Purpose: …
(define (reverse alist)
 (local [;; revacc: list-of-alpha list-of-alpha -> list-of-alpha

;; Purpose: …
(define (revacc alist acc)
 (cond
 [(empty? alist) acc]
 [(cons? alist) (revacc (rest alist) (cons (first alist) acc))]))]

 (revacc alist empty)
))

