
COMP 210, Spring 2002 1

Administrative Announcements
Exam
• Due Monday

Next Homework
• Available Monday

COMP 210, Spring 2002 2

Review
New template for generative recursion

(define (gen-recur-func problem-data)
 (cond
 [(trivial-to-solve? arg1 arg2 … argn) (solve arg1 arg2 … argn)]
 [else
 (combine-solutions

… (gen-recur-func (generate-problem1 problem-data)) …
… (gen-recur-func (generate-problem2 problem-data)) …
 …
… (gen-recur-func (generate-problemk problem-data)) …)]

))

This one offers less guidance than the structural templates did!
⇒ Need to ask some questions before we fill it in !

COMP 210, Spring 2002 3

Review
List of questions to help fill in the template
1. What is the trivial case?

→ How do we identify it?
→ How do we solve it?

2. How do we generate subproblems?
→ How many should we generate?
→ How do we generate them?

3. Does the subproblem solution solve the original problem?

4. Must we combine solutions from multiple subproblems?
→ How do we combine them?

COMP 210, Spring 2002 4

Back to Generative Recursion
Last class we were looking at hi-lo

;; hi-lo: integer integer -> integer
;; Purpose: consumes an interval and returns the number
;; hidden by guess (lo <= guess <= hi)
(define (hi-lo lo hi)
 (local [(define midpoint (/ (+ lo hi) 2))
 (define answer (guess midpoint))]
 (cond

 [(symbol=? answer ‘lower) (hi-lo midpoint hi)]
 [(symbol=? answer ‘equal) midpoint]
 [(symbol=? answer ‘higher) (hi-lo lo midpoint)]

))

COMP 210, Spring 2002 5

An Aside
Debugging hi-lo
• To understand what happens with hi-lo, we need to see the

values of lo, midpoint, and hi
• Two new Scheme expressions, begin and printf

→ Evaluates expr1, then expr2, then …, then exprn

→ Prints string, with the arguments substituted in place of tilde
expressions (see DrScheme’s Help Desk for details)

• We use them to print out the values on each recursive call

(begin expr1 expr2 … exprn)

(printf string arg1 arg2 … argn)

Try hi-lo on [0 12]
Try hi-lo on [0-15] To DrScheme

COMP 210, Spring 2002 6

Back to Generative Recursion
What happened?
• The recursive calls passed midpoint to hi-lo
• Midpoint took on non-integer values (/ (+ 0 15)) = 15/2

→ Violates the contract
→ Non-integer endpoints cannot match hidden value!

;; hi-lo2: integer integer -> integer
;; Purpose: consumes an interval and returns the number
;; hidden by guess (lo <= guess <= hi)
(define (hi-lo2 lo hi)
 (local [(define midpoint (truncate (/ (+ lo hi) 2)))
 (define answer (guess midpoint))]
 (cond

 [(symbol=? answer ‘lower) (hi-lo2 midpoint hi)]
 [(symbol=? answer ‘equal) midpoint]
 [(symbol=? answer ‘higher) (hi-lo2 lo midpoint)]

))

Returns next
lower integer

Try it on
[0 - 15]

COMP 210, Spring 2002 7

Hi-lo, again
Termination argument

At each step, hi-lo2 splits the interval into two sub-intervals
[lo - midpoint] and [midpoint - hi], where midpoint is
computed as the integer below (/ (+ lo hi)). It uses guess to
determine if the hidden number lies in [lo - midpoint], in
[midpoint - hi], or is equal to midpoint. At each recursive
call, the interval becomes smaller.
Eventually, the interval converges to a trivial range, where
the midpoint is equal to the hidden number.

Try it on
[0 - 3]

COMP 210, Spring 2002 8

More Test Cases
(hi-lo2 0 3)
• Oops. It never terminates (on its own)
• Why?

• Obvious way to fix it is to check hi explicitly

When the interval reaches the point where (- hi lo) is 1, it
can only test lo, not hi. Anytime the hidden number becomes
the upper end of an interval, the hi-lo2 will stop making
progress.

We need to test the upper bound explicitly, as in hi-lo3

COMP 210, Spring 2002 9

Hi-lo3
Checking hi explicitly

;; hi-lo3: integer integer -> integer
;; Purpose: consumes an interval and returns the number
;; hidden by guess (lo <= guess <= hi)
(define (hi-lo3 lo hi)
 (cond [(symbol=? (guess hi) ‘equal) hi]
 [else (local [(define midpoint (truncate (/ (+ lo hi) 2)))
 (define answer (guess midpoint))]
 (cond

 [(symbol=? answer ‘lower) (hi-lo3 midpoint hi)]
 [(symbol=? answer ‘equal) midpoint]
 [(symbol=? answer ‘higher) (hi-lo3 lo midpoint)]

))]))

Try it on [0 - 3]
Try it on [0 - 6]

COMP 210, Spring 2002 10

Hi-lo3
Termination argument

At each call to hi-lo3, it checks the value of hi against the
hidden number. If that test fails, it computes the midpoint
of the interval and tests it. If the midpoint equals the
hidden value, it returns the hidden value. Otherwise, it
takes the appropriate subinterval and recurs.

In the worst case, this continues until the interval contains
exactly two integers, lo and hi. It explicitly checks hi. The
computation of midpoint produces lo (due to the truncate).
Thus, it checks both endpoints, one of which must be the
hidden number.

Whew. That seems pretty complex.

COMP 210, Spring 2002 11

Hi-lo3
But wait
• Hi-lo3 checks hi on every call
• After first call, every hi has already been checked

→ Many extra calls to guess
• Can use local to elide this redundant check

;; hi-lo3a: integer integer -> integer
(define (hi-lo3a lo hi)
 (cond
 [(symbol=? (guess hi) 'equal) hi] ;; check it once
 [else (local [(define (helper lo hi) ;; recur without checking hi
 (local [(define midpoint (truncate (/ (+ lo hi) 2)))
 (define answer (guess midpoint))]
 (cond [(symbol=? answer 'higher)(helper lo midpoint)]
 [(symbol=? answer 'equal) midpoint]
 [(symbol=? answer 'lower) (helper midpoint hi)])))]
 (helper lo hi))]))

COMP 210, Spring 2002 12

HI-lo3a
Termination argument

The call to hi-lo3a checks the value of hi. If it equals the
hidden number, hi-lo3a returns.

Otherwise, it invokes helper. It picks a midpoint and checks
it for equality to the hidden number. If the midpoint is not
equal to the hidden number, it recurs on the appropriate
interval [lo - midpoint] or [midpoint - hi]. Note that both hi
and midpoint have all been checked against the hidden
number.

In the worst case, this continues until the interval contains
exactly two integers, lo and hi. Hi has already been checked.
Midpoint becomes equal to lo and helper checks it.

This version works…

COMP 210, Spring 2002 13

Hi-lo4
Another approach

;; hi-lo4: integer integer -> integer
;; Purpose: consumes an interval and returns the number
;; hidden by guess (lo <= guess <= hi)
(define (hi-lo4 lo hi)
 (local [(define midpoint (truncate (/ (+ lo hi) 2)))
 (define answer (guess midpoint))]
 (cond

 [(symbol=? answer ‘lower) (hi-lo4 (add1 midpoint) hi)]
 [(symbol=? answer ‘equal) midpoint]
 [(symbol=? answer ‘higher) (hi-lo4 lo (sub1 midpoint))]

))

Try it on [0 - 3]
Try it on [0 - 6]

COMP 210, Spring 2002 14

Hi-lo4
Termination Condition

The range between lo and hi gets strictly smaller on each
recursive call. It narrows the interval by excluding midpoint,
which it has already tested and rejected.

In the extreme case, the interval becomes a single number
(hi = lo = midpoint). At that point, the algorithm terminates
because guess must return ‘equal.

This is much simpler.

In fact, the simpler termination argument suggests
that this might be the better solution for the problem.

COMP 210, Spring 2002 15

Hi-lo
Conclusions
• Thinking about the termination condition led us to a number

of different solutions

• Simplifying the termination condition led to a simpler
implementation

• The simpler implementation may actually do less work, since
it shrinks the interval more quickly (& avoids duplicate tests)

In some sense, the extent to which you do this kind of structured
reasoning about termination and correctness determines whether you
are a recreational programmer—hacking together something and
checking it on a few simple examples—or a professional developer who
writes robust, reliable applications.

