Administrative Announcements

Exam

Covers through middle of Friday's lecture, plus lab lectures
Take home available Wednesday, due Monday at 5pm
Closed notes, closed book

Covers through Intermezzo 4 in the book

Wednesday night labs as normal

COMP 210, Spring 2002

Review

Last class

We began working with generative recursion
- New paradigm,
- Radical departure from structural recursion

Built a version of Hoare's classic algorithm, quicksort
~ Recursion in quicksort comes from insight, not data analysis
-~ Employs a "divide and conquer” strategy
- Termination relies on monotonic reduction in subproblem size

COMP 210, Spring 2002

Sorting a List of Numbers

Hoare's quicksort

;; gsort: list-of-numbers -> list-of-numbers
;; Purpose: return a list containing the input numbers, in ascending order
(define (gsort alon)
(cond
[(empty? alon) empty]
[(cons? alon)
(local [(define pivot (first alon))
(define (smaller-items alon threshold)
(filter (lambda (n) (< n threshold)) alon))
(define (larger-items alon threshold)
(filter (lambda (n) (> n threshold)) alon))]

(append (gsort (smaller-items alon pivot))

(list pivot) divide and
(gsort (larger-items alon pivot)))] conquer
)
)
COMP 210, Spring 2002 3
Review
Last class

* We began working with generative recursion
- New paradigm,
- Radical departure from structural recursion

* Built a version of Hoare's classic algorithm, quicksort
~ Recursion in quicksort comes from insight, not data analysis
-~ Employs a "divide and conquer” strategy
-~ Termination relies on monotonic reduction in subproblem size

* Today, let's look at another example of generative recursion

COMP 210, Spring 2002 4

Another Example of Generative Recursion

Sierpinski Triangles

4th Sierpinski triangle
and so on ...

A Sierpinski triangle is a
kind of fractal ..

a geometric figure that
has the same structure
at different scales

How would we generate Sierpinski triangles?

COMP 210, Spring 2002 5

Sierpinski Triangles

Generating Sierpinski friangles
* We run this program for its side effect - drawing lines
* Sierpinski: point point point -> something

—~ Don't really care what it returns, as long as it draws friangle

~ Make it boolean

- Recursively draw ith Sierpinski triangle until sides are too small

* Need a representation for a point

22 posn s 8 Name “posn” is
;; (make-posn x y) where x and y are numbers p he book
(define-struct posn (x y)) rom the boo

* Leads to a contract

Sierpinski: posn posn posh -> boolean

COMP 210, Spring 2002 6

Sierpinski Triangles

Assume three helper functions

draw-triangle: posn posn posn -> boolean
~ Draws lines: posn;->posn,, posn,->posh;, and posn;->posh,

too-small?: posn posn posn -> boolean
~ Returns true if posn, is too close to posn,

midpoint: posn posn -> posn
- returns midpoint of line from two points

* At this point, we are not that much closer to drawing the
actual triangles ...

~ Let's get down to details

COMP 210, Spring 2002 7

Sierpinski Triangles
The Basic Idea
1. Draw a triangle for three points Pi

P2 Ps

COMP 210, Spring 2002 8

Sierpinski Triangles

The Basic Idea
1. Draw a triangle for three points Pi

2. Find midpoints of three sides

PrP> Pi=P3

bz Ps
PzP3
Divide

COMP 210, Spring 2002 9

Sierpinski Triangles

The Basic Idea
1. Draw a triangle for three points Pi
2. Find midpoints of three sides
3. Recur in the outer triangles

a,b,and c
PPz P1=P3

P2 Ps
P2=P3

Divide and conquer

COMP 210, Spring 2002 10

Sierpinski Triangles

;; sierpinski: posn posn posn -> boolean
;; Purpose: draw Sierpinski triangle to a resolution defined by
" the (external) function too-small?
(define (sierpinski p1 p2 p3)
(cond
[(too-small? p1 p2 p3) true] ;; value forced by use of and
[else
(local [(define p1-p2 (midpoint p1 p2))
(define p1-p3 (midpoint p1 p3))
(define p2-p3 (midpoint p2 p3))]
(draw-triangle p1 p2 p3)
(sierpinski p1 p1-p2 p1-p3)
(sierpinski p1-p2 p2 p2-p3)
(sierpinski p2-p3 p1-p3 p3)

(and

COMP 210, Spring 2002 11

Sierpinski Triangles

Termination
* Recursion cuts off when too-small? returns true

* Some tolerance built into too-small?
. Related to screen resolution P
~ Account for computational burden

PPz P1P3

Pz Ps
P2-P3

COMP 210, Spring 2002 12

Sierpinski Triangles

Termination

* Recursion cuts off when too-small? returns true
* Some tolerance built into too-small?

P:
Correctness
* Draws an outer triangle p:. pz Ps a
+ Recurs on three corner friangles ' * Prbs
a, b,and c
* Fairly simple argument b c

P P3
P27P3

COMP 210, Spring 2002 13

Sierpinski Triangles

Termination
* Recursion cuts off when too-small? returns true
* Some tolerance built into too-small?

P:
Correctness \ o lerance
* Draws an outer triangle p:. p2. Ps
* Recurs on three corner triangles
a, b, and ¢
* Fairly simple argument
* Leads to this [p, ps

COMP 210, Spring 2002 90, we're done ... or are we? 14

Sierpinski Triangles

What about efficiency? (even if this is 210)
* How many times does <p,,p,> get drawn?

~ Once for <p;,p,.p3> p,
- Again for <p;, a, b>

- Again for subtriangles of <p,, a, b>

_ Again .. \ tolerance

~. Until too-small? returns true a b

- logz(leng'l'h Of <p1,p2>)

* What about other lines?
~. Same behavior P2 Ps

- <a,b> gets drawn whole, in halves, in quarters, ...

COMP 210, Spring 2002 15

Sierpinski Triangles

We have seen this kind of thing before
* Remember max-of-list ?

* We used a local to escape the problem
~ Exponential time to linear time

Can we do a similar thing with sierpinski?
* What do we need to preserve?

* How can we preserve it?

COMP 210, Spring 2002 16

Sierpinski Triangles

;; sierpinski: posn posn posn -> boolean
;; Purpose: draw Sierpinski triangle to a resolution defined by
" the (external) function too-small?

(de(22§d(5|erp|nsk| p1 p2 p3) The problem
[(too-small? p1 p2 p3) true] ;; value forced by use of and
[else
(local [(define p1-p2 (midpoint p1 p2)) 5 Step 2
(define p1-p3 (midpoint p1 p3)) 5 Step 2
(define p2-p3 (midpoint p2 p3)) ;) Step 2
(and | (draw-triangle p1 p2 p3) 5 Step 1
(sierpinski p1 p1-p2 p1-p3) 5 Step 3
(sierpinski p1-p2 p2 p2-p3) 5 Step 3
(sierpinski p2-p3 p1-p3 p3) 5 Step 3
)]
)
COMP 210, Spring 2002 17

Sierpinski Triangles

A Different Approach to the Basic Idea
1. Find midpoints of three sides P

P 1 "P 2 p 1 -p 3

COMP 210, Spring 2002 18

Sierpinski Triangles

A Different Approach to the Basic Idea

1. Find midpoints of three sides p1
2. Draw the inside triangle
P] _ PZ . ..'.' “““‘ .“‘ P1 _ P3
PZ ... P3
PzP3
COMP 210, Spring 2002 19

Sierpinski Triangles

A Different Approach to the Basic Idea

1. Find midpoints of three sides p1
2. Draw the inside triangle
3. Recurona, b,and c

PP PP

COMP 210, Spring 2002 20

Sierpinski Triangles

A Different Approach to the Basic Idea
1. Find midpoints of three sides P
2. Draw the inside triangle
3. Recurona, b, and c

PP,

* Andsoon ..

* But, ..
* This never draws the outside
* Need to handle that separately

COMP 210, Spring 2002 21

Sierpinski Triangles

;; sierpinski: posn posn posn -> boolean
(define (sierpinski p1 p2 p3)

(local
[(define (sierp p1 p2 p3) ;; workhorse routine for recurrence
(cond
[(too-small? p1 p2 p3) true]
[else

(local [(define p1-p2 (midpoint p1 p2))
(define p1-p3 (midpoint p1 p3))
(define p2-p3 (midpoint p2 p3))]
(and (draw-triangle p1-p2 p1-p3 p2-p3)
(sierp p1 p1-p2 p1-p3)
(sierp p1-p2 p2 p2-p3)
(sierp p2-p3 p1-p3 p3)))]
(and (draw-triangle p1 p2 p3) ;; draw current triangle
(sierp p1 p2 p3)) ;; and recur
)

COMP 210, Spring 2002 22

Wrap Up

* Used same divide and conquer strategy
* Built one solution and analyzed it

* Consequences of generating too many solutions
—~ Needed to revise our solution to ensure reasonable behavior
—~ Think about big picture issues

* Next Class
~ Exam will be handed out
. Templates for Generative Recursion

COMP 210, Spring 2002

23

