
COMP 210, Spring 2002 1

Administrative Announcements
• Who went to the challenge lab?

• Exam
→ Covers through middle of today’s lecture, plus lab lectures
→ Take home? (hand out Wednesday, due Monday)
→ Closed notes, closed book
→ This means we can have Wednesday night lab

COMP 210, Spring 2002 2

Abstract Functions
Capture common functionality
• Scheme provides built-in versions of some important ones

→ Filter, map, foldl, foldr, ormap, andmap, …
→ See the lab notes and the book for examples

• Idea is simple
→ Rather than rewriting code a second time, try to abstract the

basic form into a function that you can use for both

• Implementation requires practice
→ Learning to see patterns, extract them, and use them
→ Do the homework

COMP 210, Spring 2002 3

Abstract Functions
Consider map
• Applies a function to a list, element-by-element

→ map: (alpha->beta) list-of-alpha -> list-of-beta
→ Works for any kind of data – alpha & beta
→ Simple example of phenomenon called parametric polymorphism

Example

;; triple: list-of-number -> list-of-number
;; Purpose: compute 3x each number in the list
(define (triple alon)
 (map (lambda (x)(+ x x x)) alon))

This example uses lambda

COMP 210, Spring 2002 4

Lambda
Lambda creates anonymous functions
• Quick, compact syntax
• Creates full-fledged functions, albeit without names

• Lambda is the function constructor for Scheme
(lambda (arg1 arg2 … argn) expression)

→ Creates an anonymous function of n arguments

(define (is-fee? asym) (lambda (asym)
 (symbol=? asym ‘fee)) (symbol=? asym ‘fee))≡

COMP 210, Spring 2002 5

Using lambda
What does lambda do?

Dr. Scheme rewrites (lambda (arg1 arg2 … argn) expression) as

Subtle points
• The rewriting process has to concoct the name, not you
• This creates the function & returns it

(local [(define (a-unique-name arg1 arg2 … argn)
 expression)

]
 a-unique-name)

COMP 210, Spring 2002 6

Lambda
How do lambda & define differ?

;; times3: number -> number
(define (times3 x)
 (* 3 x))

• Creates a function that multiplies
 its input by three

• Associates that function with the
 Scheme object “times3”

;; same function, no name
(lambda (x) (* 3 x))

• Creates an anonymous function
 that multiplies its input by three

;; times3: number -> number
(define times3
 (lambda (x) (* 3 x)))

• Binds the anonymous function to
 the Scheme object “times3”

COMP 210, Spring 2002 7

Exam Preparation
Major themes since the last test
• Programs that manipulate trees

→ Child-centric & parent-centric family trees, directories & files

• Programs that have multiple complicated arguments
→ Merge, flatten, …
→ Work out the cases, then write the template

• Using local
→ Replace multiple invocations with single one
→ Break up complex expressions into simpler, more readable ones

• Abstract functions
→ Looked at (& used) filter, map, foldl, foldr
→ Learned to use lambda

COMP 210, Spring 2002 8

Moving on
Structural recursion
• Follows a relationship in the data

→ Traversing a list, counting down natural numbers
• Derived naturally (almost) from data analysis
• Finite data implies termination

Generative recursion
• Comes from insight into the algorithm

→ Enumerating possible solutions, applying some rule
• Create new problem instances and manipulate them

This is the final third of COMP 210

COMP 210, Spring 2002 9

Sorting a List of Numbers
You develop mergesort in the homework

→ Let’s try a generative approach

The Plan:
1. Pick a representative list element, the pivot
2. Partition the list into two list around the pivot

• One list has values < pivot, other has values > pivot
3. Sort the smaller lists

• Use recursion on non-trivial cases
4. Combine the sorted lists

• Append smaller, pivot, and larger

Such a plan
is called an
algorithm

COMP 210, Spring 2002 10

Sorting a List of Numbers
Developing the code
• Start with the standard list template
• Fill it in

;; qsort: list-of-numbers -> list-of-numbers
;; Purpose: return a list containing the input numbers, in ascending order
(define (qsort alon)
 (cond
 [(empty? alon) …]
 [(cons? alon)
 … (first alon) … (qsort (rest alon)) …]
)
)

We know (from the contract)
that this is filled with empty

How do we use this stuff to
implement our plan

COMP 210, Spring 2002 11

Sorting a List of Numbers
Developing the code
• Filling it in from the English description (algorithm)

;; qsort: list-of-numbers -> list-of-numbers
;; Purpose: return a list containing the input numbers, in ascending order
(define (qsort alon)
 (cond
 [(empty? alon) empty]
 [(cons? alon)
 (local [(define pivot (first alon))]
 … (first alon) … (qsort (rest alon)) …]
)
)

Step 2. Partition alon around pivot

This task does not fit the template (or the methodology!)

Step 1. Pick a pivot

COMP 210, Spring 2002 12

Sorting a List of Numbers
Developing the code
• Implementing Step 2 – Partition alon around pivot

;; qsort: list-of-numbers -> list-of-numbers
;; Purpose: return a list containing the input numbers, in ascending order
(define (qsort alon)
 (cond
 [(empty? alon) empty]
 [(cons? alon)
 (local [(define pivot (first alon))]

 … Start from a clean slate …]
)
) 1. Use helper functions (smaller-items alon)

 & (larger-items alon)
2. Recur on qsort
3. Combine results with append

COMP 210, Spring 2002 13

Sorting a List of Numbers
Developing the code

;; qsort: list-of-numbers -> list-of-numbers
;; Purpose: return a list containing the input numbers, in ascending order
(define (qsort alon)
 (cond
 [(empty? alon) empty]
 [(cons? alon)
 (local [(define pivot (first alon))]

 (append (qsort (smaller-items alon pivot))
 (list pivot)
 (qsort (larger-items alon pivot)))]

)
)

;; smaller-items: list-of-numbers number -> list-of-numbers

;; larger-items: list-of-numbers number -> list-of-numbers

COMP 210, Spring 2002 14

Sorting a List of Numbers
Developing the code

;; qsort: list-of-numbers -> list-of-numbers
;; Purpose: return a list containing the input numbers, in ascending order
(define (qsort alon)
 (cond
 [(empty? alon) empty]
 [(cons? alon)
 (local [(define pivot (first alon))]

 (append (qsort (smaller-items alon pivot))
 (list pivot)
 (qsort (larger-items alon pivot)))]

)
)

;; smaller-items: list-of-numbers number -> list-of-numbers

;; larger-items: list-of-numbers number -> list-of-numbers

Step 2: Partition alon around pivot

COMP 210, Spring 2002 15

Sorting a List of Numbers
Developing the code

;; qsort: list-of-numbers -> list-of-numbers
;; Purpose: return a list containing the input numbers, in ascending order
(define (qsort alon)
 (cond
 [(empty? alon) empty]
 [(cons? alon)
 (local [(define pivot (first alon))]

 (append (qsort (smaller-items alon pivot))
 (list pivot)
 (qsort (larger-items alon pivot)))]

)
)

;; smaller-items: list-of-numbers number -> list-of-numbers

;; larger-items: list-of-numbers number -> list-of-numbers

Step 3: Recur on smaller lists

COMP 210, Spring 2002 16

Sorting a List of Numbers
Developing the code

;; qsort: list-of-numbers -> list-of-numbers
;; Purpose: return a list containing the input numbers, in ascending order
(define (qsort alon)
 (cond
 [(empty? alon) empty]
 [(cons? alon)
 (local [(define pivot (first alon))]

 (append (qsort (smaller-items alon pivot))
 (list pivot)
 (qsort (larger-items alon pivot)))]

)
)

;; smaller-items: list-of-numbers number -> list-of-numbers

;; larger-items: list-of-numbers number -> list-of-numbers

must be a list

Step 4: Combine the results

COMP 210, Spring 2002 17

Sorting a List of Numbers
Developing the code
• What about smaller-items and larger-items?

• Can hide both of these in the local
→ Simplify a complex expression

;; smaller-items: list-of-numbers number -> list-of-numbers
(define (smaller-items alon threshold)
 (filter (lambda (n) (< n threshold)) alon))

;; larger-items: list-of-numbers number -> list-of-numbers
(define (larger-items alon threshold)
 (filter (lambda (n) (> n threshold)) alon))

COMP 210, Spring 2002 18

Sorting a List of Numbers
The code

;; qsort: list-of-numbers -> list-of-numbers
;; Purpose: return a list containing the input numbers, in ascending order
(define (qsort alon)
 (cond
 [(empty? alon) …]
 [(cons? alon)
 (local [(define pivot (first alon))

 (define (smaller-items alon threshold)
 (filter (lambda (n) (< n threshold)) alon))
 (define (larger-items alon threshold)
 (filter (lambda (n) (> n threshold)) alon))]

 (append (qsort (smaller-items alon pivot))
 (list pivot)
 (qsort (larger-items alon pivot)))]

)
)

COMP 210, Spring 2002 19

Sorting a List of Numbers
Quicksort
• Tony Hoare’s brilliant insight
• One of fastest sorts known to man

Our version
• Naïve choice of pivot

→ Always takes first element
→ Ordered lists generate unbalanced partitions

• Naïve handling of pivot elements
→ Need to find duplicate elements
→ Another filter-based helper function

COMP 210, Spring 2002 20

Sorting a List of Numbers
;; qsort: list-of-numbers -> list-of-numbers
;; Purpose: return a list containing the input numbers, in ascending order
(define (qsort alon)
 (cond
 [(empty? alon) …]
 [(cons? alon)
 (local [(define pivot (first alon))

 (define (smaller-items alon threshold)
 (filter (lambda (n) (< n threshold)) alon))
 (define (larger-items alon threshold)
 (filter (lambda (n) (> n threshold)) alon))
 (define (equal-items alon threshold)
 (filter (lambda (n) (= n threshold)) alon))]

 (append (qsort (smaller-items alon pivot))
 (equal-items alon pivot)
 (qsort (larger-items alon pivot)))]

)
)

