
COMP 210, Spring 2002 1

Administrative Announcements
• Homework due today
• Next homework available today, due next Friday
• Challenge lab: tonight at 8:30 in Ryon

• Exam next Wednesday night
→ Covers lecture through Friday, lab lectures
→ 7 to 9 pm
→ Closed notes, closed book
→ Location TBA
→ Wednesday night lab folks should attend another lab

COMP 210, Spring 2002 2

Review
Last lecture:
• Did a whole series of examples

→ keep-lt-x, keep-gt-y, keep-bet-u-and-v

• Used parameterization to share code
• Used local to simplify the code

• Finally, abstracted out the conceptual heart of the code
filter: (alpha->boolean) list-of-alpha -> list-of-alpha
→ We call filter an abstract function (abstracted?)
→ We will encounter more abstract functions
→ We will make heavy use of them (reuse?)

COMP 210, Spring 2002 3

Review
Develop keep-fee

;; keep-fee: list-of-symbol -> list-of-symbol
;; Purpose: returns a list containing every occurrence of ‘fee’ in the list
;; (define (keep-fee alos) …)

(define (keep-fee alos)
 (local [(define is-fee? asym) (symbol=? asym ‘fee))]
 (filter is-fee? alos)
))

(keep-fee (list ‘fee ‘fie ‘foe ‘fum ‘fee)) -> (list ‘fee ‘fee)

(keep-fee empty) -> empty

COMP 210, Spring 2002 4

Review
Critical points
• Pass a program as an argument

→ Description is its contract in parentheses
→ cons would be (alpha list-of-alpha -> list-of-alpha)

• Scheme functions are just programs
→ Can pass cons, <, >, +, symbol=? as arguments
→ Programs are data

• Concept is called functional abstraction

This is not your basic
high-school AP
programming course

*

COMP 210, Spring 2002 5

Helper functions
Abstract functions usually require helper functions
• Create many new names

→ Cognitive overhead of inventing and tracking names
→ Helper functions are used once, as was is-fee?

• Can hide them inside a local
→ Works fine
→ Well-understood rewriting rules

• But, …
→ A fairly heavy price to pay for creating and using a function
→ Lots of typing, lots of steps in rewriting rules

COMP 210, Spring 2002 6

Local for helper functions
Using local for this purpose is hard to justify
• Our rules for local

1. Use local to avoid computing some complicated value more than
once. This made a huge difference in the cost of max.

2. Use local to make complex expressions more readable by
introducing helper functions that break it into tractable parts.

• This case doesn’t really fit either criterion
→ The expression is used once, not twice, or thrice, or …

→ The expression is not complicated.
→ is-fee? is about as simple as Scheme gets …

• We used a local just to create a function that we can pass
to filter

Elliding
invariants
fits either
one

COMP 210, Spring 2002 7

Helper functions
Need the ability to create anonymous functions
• Want a quick, easy, compact syntax
• Should create full-fledged functions

Enter λ, written lambda
• Lambda is a constructor for anonymous functions

(lambda (arg1 arg2 … argn) expression)
→ Creates an anonymous function of n arguments

(define (is-fee? asym) (lambda (asym)
 (symbol=? asym ‘fee)) (symbol=? asym ‘fee))≡

COMP 210, Spring 2002 8

Using lambda
We can use an anonymous function in keep-fee

This is equivalent to our earlier version of keep-fee

;; keep-fee: list-of-symbol -> list-of-symbol
;; Purpose: return a list containing each occurrence of ‘fee
(define (keep-fee alos)
 (filter (lambda (asym)(symbol=? asym ‘fee)) alos))

;; keep-fee: list-of-symbol -> list-of-symbol
;; Purpose: return a list containing each occurrence of ‘fee
(define (keep-fee alos)
 (local [(define is-fee? asym) (symbol=? asym ‘fee))]
 (filter is-fee? alos)
))

COMP 210, Spring 2002 9

Using lambda
What does lambda do?

Dr. Scheme rewrites (lambda (arg1 arg2 … argn) expression) as

Subtle points
• The rewriting process has to concoct the name, not you
• This creates the function & returns it

(local [(define (a-unique-name arg1 arg2 … argn)
 expression)

]
 a-unique-name)

COMP 210, Spring 2002 10

Another example
Develop squares

It would be cleaner to use a helper function, square

;; squares: list-of-number -> list-of-number
;; Purpose: returns a list containing the squares of the input list
 (define (squares alon)
 (cond
 [(empty? alon) empty]
 [(cons? alon) (cons (* (first alon) (first alon))

 (squares (rest alon)))]
))

COMP 210, Spring 2002 11

Another example
Develop squares

We could develop cubes, & quads, & quints, & …
• These need helper functions cube, quad, quint, …
• They fit a pattern: apply function to every element of a list

;; squares: list-of-number -> list-of-number
;; Purpose: returns a list containing the squares of the input list
 (define (squares alon)
 (local [(define (square x)(* x x))]
 (cond

 [(empty? alon) empty]
 [(cons? alon) (cons (square (first alon)) (squares (rest alon)))]
)))

COMP 210, Spring 2002 12

Another abstract function
Scheme provides the abstract function map
• Takes function & list
• Applies function to list, element-by-element

;; squares: list-of-number -> list-of-number
;; Purpose: returns a list containing the squares of the input list
 (define (squares alon)
 (map (lambda (x)(* x x)) alon))

