
COMP 210, Spring 2002 1

Administrative Announcements
• Welcome back
• Homework due Wednesday, as usual
• Exam next week

→ Will cover material through Friday’s lecture
→ Will cover lab lectures including this week’s lab
→ Either Wednesday in class (1 hour) or in 7-9pm (2 hours)
→ Closed notes, closed book

COMP 210, Spring 2002 2

Functional Abstraction
What’s abstraction?
• Have built programs that take parameters

→ Fundamental form of abstraction

• What about higher levels of abstraction?
→ Abstracting over functionality

COMP 210, Spring 2002 3

Simple programs
Program to pick out the numbers < 5 in a list

;; keep-lt-5 : list-of-numbers -> list-of-numbers
;; Purpose: result contains every number < 5 in the input list
(define (keep-lt-5 alon)
 (cond
 [(empty? alon) empty]
 [(cons? alon)
 (cond

[(< (first alon) 5) (cons (first alon) (keep-lt-5 (rest alon)))]
[else (keep-lt-5 (rest alon))]

)]))

Followed the standard list template

Might clean it up with a helper function, but …

COMP 210, Spring 2002 4

Simple programs
Program to pick out the numbers < 9 in a list

;; keep-lt-9 : list-of-numbers -> list-of-numbers
;; Purpose: result contains every number < 9 in the input list
(define (keep-lt-9 alon)
 (cond
 [(empty? alon) empty]
 [(cons? alon)
 (cond

[(< (first alon) 9) (cons (first alon) (keep-lt-9 (rest alon)))]
[else (keep-lt-9 (rest alon))]

)]))

COMP 210, Spring 2002 5

Simple programs
Program to pick out the numbers < x in a list

;; keep-lt : list-of-numbers number -> list-of-numbers
;; Purpose: result contains every number < x in the input list
(define (keep-lt alon x)
 (cond
 [(empty? alon) empty]
 [(cons? alon)
 (cond

[(< (first alon) x) (cons (first alon) (keep-lt (rest alon) x))]
[else (keep-lt (rest alon) x)]

)]))

Abstracted out the upper bound

COMP 210, Spring 2002 6

Simple programs
Using local to ellide the invariant parameter

;; keep-lt : list-of-numbers number -> list-of-numbers
;; Purpose: result contains every number < x in the input list
(define (keep-lt alon x)
 (local
 [(define (filter-lt alon)
 (cond
 [(empty? alon) empty]
 [(cons? alon)
 (cond

 [(< (first alon) x) (cons (first alon) (filter-lt (rest alon)))]
 [else (filter-lt (rest alon))]

)]))]
 (filter-lt alon)
))

COMP 210, Spring 2002 7

Simple programs
Back to keep-lt-5 and keep-lt-9

;; with keep-lt defined as on the last slide …

(define (keep-lt-5 alon)
 (keep-lt alon 5))

(define (keep-lt-9 alon)
 (keep-lt alon 9))

• Looks a lot easier than writing separate code for each one

• Creates single-point-of-control on keep-lt

COMP 210, Spring 2002 8

Simple programs
Program to pick out the numbers > 5 in a list

;; keep-gt-5 : list-of-numbers -> list-of-numbers
;; Purpose: result contains every number > 5 in the input list
(define (keep-gt-5 alon)
 (cond
 [(empty? alon) empty]
 [(cons? alon)
 (cond

[(> (first alon) 5) (cons (first alon) (keep-gt-5 (rest alon)))]
[else (keep-gt-5 (rest alon))]

)]))

All we did was change the comparison operator

Next, we can abstract the number and ellide the invariant

Eventually, we end up with keep-gt

COMP 210, Spring 2002 9

Simple programs
;; keep-gt : list-of-numbers number -> list-of-numbers
;; Purpose: result contains every number > x in the input list
(define (keep-gt alon x)
 (local
 [(define (filter-gt alon)
 (cond
 [(empty? alon) empty]
 [(cons? alon)
 (cond

 [(> (first alon) x) (cons (first alon) (filter-gt (rest alon)))]
 [else (filter-gt (rest alon))]

)]))]
 (filter-gt alon)
))

Can we abstract out < and > ?

COMP 210, Spring 2002 10

Critical Aside
How would we represent < and > ?
• We need a contract

→ <: (number number -> boolean)
→ >: (number number -> boolean)

• We need a name
→ What do we call < and > ?
→ How about < and > ?
→ (fee 1) invokes a program named fee
→ Does (< 2 3) invoke a program named < ?

• Programs have names and can be passed around like values
→ Programs are values in some more complicated algebraic space

COMP 210, Spring 2002 11

Back to abstraction
Abstract keep-lt-5 and keep-gt-5

;; keep-rel-5 : list-of-numbers (number number -> bool) -> list-of-numbers
;; Purpose: result contains every number where “relation n 5” is true
(define (keep-rel-5 alon rel)
 (cond
 [(empty? alon) empty]
 [(cons? alon)
 (cond

[(rel (first alon) 5)(cons (first alon) (keep-rel-5 (rest alon) rel))]
[else (keep-rel-5 (rest alon) rel)]

)]))

(define (keep-lt-5 alon)
 (keep-rel-5 alon <))
(define (keep-gt-5 alon)
 (keep-rel-5 alon >))

COMP 210, Spring 2002 12

Following the yellow brick road …
And, we can pass in the number and ellide invariants …
;; keep-rel: list-of-nums (num num -> bool) num -> list-of-nums
;; Purpose: keep the numbers specified by relation and x
(define (keep-rel alon rel x)
 (local
 [(define (filter-rel alon) ;; treat rel and x as invariants
 (cond
 [(empty? alon) empty]
 [(cons? alon)
 (cond

 [(rel (first alon) x)
 (cons (first alon) (filter-rel (rest alon)))]

 [else (filter-rel (rest alon))])]))]
 (filter-rel alon)))

(define (keep-gt-9 alon)
 (keep-rel alon > 9)) And so on …

COMP 210, Spring 2002 13

What about other comparisons?
Does this work for programs you write?
• < and > are built into Scheme
• What about a program you write?

• Can we pass this to keep-rel and have it work?
→ No, the contract is wrong
→ But, we can develop keep-bet with all the gory details

;; between?: number number number -> boolean
;; Purpose: takes lower and upper bound, plus number
;; returns true if number is between lower & upper bound,
;; inclusive (lb <= x <= ub)
(define (between? lb ub x)
 (and (<= lb x) (<= x ub)))

COMP 210, Spring 2002 14

Abstracting out the differences
So far, we’ve abstracted out numbers and programs
• All had the same contracts …
• Can we abstract away the contract?

→ Lets sidestep this for a slide or two
• Look at the common code in all these applications

(define (keep … alon)
 (local
 [(define (filter alon)
 (cond [(empty? alon) empty]
 [(cons? alon)
 (cond
 [(… (first alon) …) (cons (first alon) (filter (rest alon)))]
 [else (filter (rest alon))])]))]
 (filter alon)))

Reordered parameters to make
the differences come first

COMP 210, Spring 2002 15

Abstracting out the differences
Let’s fill in the gaps

(define (keep keep-elt? alon)
 (local
 [(define (filter alon)
 (cond [(empty? alon) empty]
 [(cons? alon)
 (cond
 [(keep-elt? (first alon)) (cons (first alon) (filter (rest alon)))]
 [else (filter (rest alon))])]))]
 (filter alon)))

keep-elt? must be
(number -> boolean)

COMP 210, Spring 2002 16

Using keep
(define (keep keep-elt? alon)
 (local
 [(define (filter alon)
 (cond [(empty? alon) empty]
 [(cons? alon)
 (cond
 [(keep-elt? (first alon) (cons (first alon) (filter (rest alon)))]
 [else (filter (rest alon))])]))]
 (filter alon)))

(define (keep-lt-5 alon)
 (local [(define (lt-5? x) (< x 5))]
 (keep lt-5? alon)
))
(define (keep-bet-5-9 alon)
 (local [(define (bet-5-9? x) (and (<= 5 x) (<= x 9)))]
 (keep bet-5-9? alon)))

COMP 210, Spring 2002 17

Filter
(define (keep keep-elt? alon)
 (local
 [(define (filter alon)
 (cond [(empty? alon) empty]
 [(cons? alon)
 (cond
 [(keep-elt? (first alon) (cons (first alon) (filter (rest alon)))]
 [else (filter (rest alon))])]))]
 (filter alon)))

Keep is so useful that Scheme provides a built-in version

• Of course, Scheme’s version is less restrictive

• It isn’t limited to numbers

filter: (alpha->boolean) list-of-alpha -> list-of-alpha

 where alpha is a kind of data, i.e, number, symbol, list, structure, …

