
COMP 210, Spring 2002 1

Administrative Notes
Next Exam
• Two potential dates

→ Monday, March 18, 2002 or Wednesday, March 20, 2002
• Two hour exam (in the evening)

Sections in the book
• Family trees were 14-16
• Multiple complex arguments was 17

Happy “Thinking Day”
• Shared birthday of Lord & Lady Baden Powell
• Day for reflection on the true meaning of “scouting”

COMP 210, Spring 2002 2

Programs with Multiple Complex Arguments
So far, three cases
• Two arguments, one is not inspected

→ Use template for the inspected argument

• Two arguments, with simplifying property
→ Lists of same length
→ Trees of identical shape
→ Use one argument to control the flow of the program

• Two arguments, no simplifying assumptions
→ Build a table of the cases
→ Develop tests for each case
→ Use a cond with a clause for each case
→ Lots of opportunities to recur

Example: merge

Example: make-points

Example: append

COMP 210, Spring 2002 3

Programs with Multiple Complex Arguments
Sorting with merge

(list c1 c2 c3 c4 c5 c6 c7 c8) ⇒

(list c1) (list c2) (list c3) (list c4) (list c5) (list c6) (list c7) (list c8)

 (list ci cj) (list ck cl) (list cm cn) (list co cp)
⇓ merge ⇓ merge ⇓ merge ⇓ merge

 (list ci cj ck cl) (list cm cn co cp)
⇓ merge ⇓ merge

 (list ci cj ck cl cm cn co cp)
⇓ merge

Question becomes, can we generate singleton lists from a list?
• We do not yet have the tools to do this
• Next section of 210 examines a paradigm that can do this

COMP 210, Spring 2002 4

Moving on …
COMP 210 has mid-term grades due next week …
• Need software to help compute grades
• Assume that I have a list of scores

• Develop best-score: list-of-number→number

;; a list-of-numbers is either
;; – empty, or
;; – (cons f r), where f is a number and r is a list-of-numbers
;; We will use Scheme’s built-in list constructor for list-of-numbers

COMP 210, Spring 2002 5

Best-score
Example

Work from standard list template

(list 72 84 99 53 88 75 104 62)

(define (f a-los …)
 (cond
 [(empty? a-los) …]
 [(cons? a-los)
 … (first a-los) …

… (f (rest a-los) …) …]
))

COMP 210, Spring 2002 6

Best-score
Filling in the template

;; best-score: list-of-number -> number
;; Purpose: return the best score in the list
(define (best-score a-los …)
 (cond
 [(empty? a-los) …]
 [(cons? a-los)
 … (first a-los) …

… (best-score (rest a-los) …) …]
))

What goes here?

Deep philosophical question
• What is (best-score empty) ?

→ Since it’s a test, we have a lower bound of zero
→ Can return zero

COMP 210, Spring 2002 7

Best-score
Filling in the template

;; best-score: list-of-score -> number
(define (best-score a-los)
 (max-of-list a-los 0))

;; bigger: number number -> number
(define (bigger n1 n2)
 (cond [(<= n1 n2) n2]
 [else n1]))

;; max-of-list: list number -> number
(define (max-of-list a-list lb)
 (cond [(empty? a-list) lb]
 [(cons? a-list) (bigger (first a-los) (max-of-list (rest a-los) lb)]
))

Helper functions
to make it clean

COMP 210, Spring 2002 8

The Real Problem
The lower bound let us sidestep the issue

What if we do not have a lower bound?
• (max empty) must return a number
• There is no good answer for this one

→ - ∞ is smaller than any other number

→ How can a program that uses max tell if the list actually
contained - ∞ or not?

We need another answer to this quandry

COMP 210, Spring 2002 9

Non-empty lists
A non-empty list lets us finesse the problem
 in a more rigorous way

;; a non-empty-list-of-numbers (nelon) is either
;; – (cons f empty) where f is a number, or
;; – (cons f r) where f is a number and r is a nelon

;; We will use Scheme’s built-in list constructor for nelon

;; template for nelon
(define (f a-nelon …)
 (cond
 [(empty? (rest a-nelon)) … (first a-nelon)…]
 [(cons? (rest a-nelon))
 … (first a-nelon) …

… (f (rest a-nelon) …) …]
))

COMP 210, Spring 2002 10

Non-empty lists
Finding the maximum of a nelon is easier

;; max-of-nelon: nelon -> number
(define (max-of-nelon a-nelon)
 (cond
 [(empty? (rest a-nelon)) (first a-nelon)]
 [(cons? (rest a-nelon))
 (cond

[(>= (first a-nelon)(max-of-nelon (rest a-nelon))) (first a-nelon)]
 [else (max-of-nelon (rest a-nelon))]
)]
))

We restricted the domain of the inputs to avoid the tricky
case – an old and time-honored trick!

COMP 210, Spring 2002 11

Non-empty lists
What’s wrong with max-of-nelon?

;; max-of-nelon: nelon -> number
(define (max-of-nelon a-nelon)
 (cond
 [(empty? (rest a-nelon)) (first a-nelon)]
 [(cons? (rest a-nelon))
 (cond

[(>= (first a-nelon) (max-of-nelon (rest a-nelon))) (first a-nelon)]

 [else (max-of-nelon (rest a-nelon))]
)]
))

We wrote this expression twice

Violates notion of single point of control
⇒ Higher creative burden, higher maintenance burden
Evaluating (max-of-nelon (rest a-nelon)) twice is wasteful
⇒ Efficiency is not an objective, but this becomes ridiculous

COMP 210, Spring 2002 12

Non-empty lists
How bad can it get?
• Let’s try it
• (max (list 1 2 3 4 5 6)) 1

→ Recurs twice on (list 2 3 4 5 6) 2
→ Each of those recurs twice on (list 3 4 5 6) 4
→ Each of those recurs twice on (list 4 5 6) 8
→ Each of those recurs twice on (list 5 6) 16
→ Each of those recurs twice on (list 6) 32
→ Phew! This is getting ridiculous ⇒ 63

• It’s a little better if the list is not in order, but …
→ List of length n calls max 2n - 1 times
→ This is too much
→ List of length 7 would take 127 calls, 8 would take 255, …

COMP 210, Spring 2002 13

What’s the answer?
Need a new (for COMP 210) idea
• Save the value of max-of-list
• Makes it recur only once
• (max (list 1 2 3 4 5 6)) 1

→ Recurs once on (list 2 3 4 5 6) 1
→ Recurs once on (list 3 4 5 6) 1
→ Recurs once on (list 4 5 6) 1
→ Recurs once on (list 5 6) 1
→ Recurs once on (list 6) 1
→ And is done ⇒ 6

• Reduces work to n calls for list of length n
→ Exponential savings in work are always worth pursuing

COMP 210, Spring 2002 14

Next class
We will introduce a new piece of Scheme syntax
• It will let us save results of temporary computations
• It will improve the power and efficiency of our programs
• It will introduce a critical concept in Computer Science

→ Lexical scoping

READ INTERMEZZO THREE FOR MONDAY

