
COMP 210, Spring 2002 1

Administrative Notes
Homework
• Next homework out this afternoon
• Full-length assignment

Lab lecture
• Focus on programs with multiple complex arguments
• This stuff is important

→ many real programs fit this mold

COMP 210, Spring 2002 2

Programs with Multiple Complex Arguments
So far, three cases
• Two arguments, one is not inspected

→ Use template for the inspected argument

• Two arguments, with simplifying property
→ Lists of same length
→ Trees of identical shape
→ Use one argument to control the flow of the program

• Two arguments, no simplifying assumptions
→ Build a table of the cases
→ Develop tests for each case
→ Use a cond with a clause for each case
→ Lots of opportunities to recur

Example: merge

Example: make-points

Example: append

COMP 210, Spring 2002 3

Programs with Multiple Complex Arguments
Another example

• Merge must look inside both lists
• The lists can have different length

→ (merge empty (cons 1 empty)) should be (cons 1 empty)

;; merge : list-of-numbers list-of-numbers -> list-of-numbers
;; Purpose: consumes two lists of numbers, assumed to be in
;; ascending order by value, and produces a single list of
;; numbers that contains all the elements of the input lists
;; (including duplicates) in ascending order by value
(define (merge a-lon1 a-lon2) …)

COMP 210, Spring 2002 4

Programs with Multiple Complex Arguments
Merge
• Questions for list X list

(and
 (cons? a-lon1)
 (cons? a-lon2))

(and
 (cons? a-lon1)
 (empty? a-lon2))

(cons? a-lon1)

(and
 (empty? a-lon1)
 (cons? a-lon2))

(and
 (empty? a-lon1)
 (empty? a-lon2))

(empty? a-lon1)

(cons? a-lon2)(empty? a-lon2)

The template must include (and handle) all these cases

COMP 210, Spring 2002 5

Programs with Multiple Complex Arguments
Merge – the template

(define (f a-lon1 a-lon2)
 (cond
 [(and (empty? a-lon1) (empty? a-lon2)) …]

 [(and (empty? a-lon1) (cons? a-lon2))
… (first a-lon2) … (f a-lon1 (rest a-lon2)) …]

 [(and (cons? a-lon1) (empty? a-lon2))
… (first a-lon1) … (f (rest a-lon1) a-lon2)…]

 [(and (cons? a-lon1) (cons? a-lon2))
… (first a-lon1) … (first a-lon2) …
… (f a-lon1 (rest a-lon2)) …
… (f (rest a-lon1) a-lon2) …
… (f (rest a-lon1) (rest a-lon2)) …]

)
)

May not
need all the
possible
recursions

COMP 210, Spring 2002 6

Programs with Multiple Complex Arguments
Merge – the program

(define (merge a-lon1 a-lon2)
 (cond
 [(and (empty? a-lon1) (empty? a-lon2)) empty]
 [(and (empty? a-lon1) (cons? a-lon2)) a-lon2]
 [(and (cons? a-lon1) (empty? a-lon2)) a-lon1]
 [(and (cons? a-lon1) (cons? a-lon2))
 (cond
 [(< (first a-lon1) (first a-lon2)

(cons (first a-lon1) (merge (rest a-lon1) a-lon2))]
 [else

 (cons (first a-lon2) (merge a-lon1 (rest a-lon2)))]
)
]
)
)

COMP 210, Spring 2002 7

Programs with Multiple Complex Arguments
What good is merge?
• Forms the core of a general algorithm for sorting
• To sort a list

→ Break list into lists of length one (or two)
→ Merge adjacent lists, merge results, …

The result is method of choice for sorting sets of data that
are too large to fit in memory

COMP 210, Spring 2002 8

Programs with Multiple Complex Arguments
Sorting with merge

(list c1 c2 c3 c4 c5 c6 c7 c8) ⇒

(list c1) (list c2) (list c3) (list c4) (list c5) (list c6) (list c7) (list c8)

 (list ci cj) (list ck cl) (list cm cn) (list co cp)
⇓ merge ⇓ merge ⇓ merge ⇓ merge

 (list ci cj ck cl) (list cm cn co cp)
⇓ merge ⇓ merge

 (list ci cj ck cl cm cn co cp)
⇓ merge

Question becomes, can we generate singleton lists from a list?
• We do not yet have the tools to do this
• Next section of 210 examines a paradigm that can do this

COMP 210, Spring 2002 9

Programs with Multiple Complex Arguments
Methodology
• We added some implicit steps to the methodology
• Building the template requires thought
• Getting correct template is critical

1. Build a table of the cases
2. Should be n x m

→ n is number of clauses in data definition for 1st argument
→ m is number of clauses in data definition for 2nd argument

3. Develop tests and use them in cond clauses
4. Work out the possible recursion relationships

Wrapping up this set of ideas

COMP 210, Spring 2002 10

Programs with Multiple Complex Arguments
Philosophy
• In general, there is only one template for a pair of

arguments
• For list x list, it’s the full template we developed for merge
• We may, however, simplify that template

→ Problem-specific knowledge, as in append or make-points
→ These simplified templates speed up development
→ These simplified templates may lead to cleaner programs

COMP 210, Spring 2002 11

Programs with Multiple Complex Arguments
Append
• Used the form of the standard list template

• Key was to recognize that list2 is uninspected

(define (f list1 list2)
 (cond
 [(empty? list1) …]
 [(cons? list1)

… (first list1) …
… (f (rest list1) list2) …]

)
)

Normally, other arguments
are ellided

COMP 210, Spring 2002 12

Programs with Multiple Complex Arguments
Make-points
• Recognized that both lists must have same length

• Simplifies the cond structure

(define (f x-list y-list …)
 (cond
 [(empty? x-list) …]
 [(cons? x-list)

… (first x-list) … (first y-list) …
… (f (rest x-list) (rest y-list) …) …]

)
)

Only need to test one argument

COMP 210, Spring 2002 13

Programs with Multiple Complex Arguments
Merge
• Needed the full template for two lists

(define (f a-lon1 a-lon2)
 (cond
 [(and (empty? a-lon1) (empty? a-lon2)) …]

 [(and (empty? a-lon1) (cons? a-lon2))
… (first a-lon2) … (f a-lon1 (rest a-lon2)) …]

 [(and (cons? a-lon1) (empty? a-lon2))
… (first a-lon1) … (f (rest a-lon1) a-lon2)…]

 [(and (cons? a-lon1) (cons? a-lon2))
… (first a-lon1) … (first a-lon2) …
… (f a-lon1 (rest a-lon2)) …
… (f (rest a-lon1) a-lon2) …
… (f (rest a-lon1) (rest a-lon2)) …]

)
)

Others are special
cases of this one

COMP 210, Spring 2002 14

Programs with Multiple Complex Arguments
Philosophy
• In general, there is only one template for a pair of

arguments
• For list x list, it’s the full template we developed for merge
• We may, however, simplify that template

→ Problem-specific knowledge, as in append or make-points
→ These simplified templates speed up development
→ These simplified templates may lead to cleaner programs

But,
• They are still special cases of the general template

