Administrative Notes

Homework

* Short homework due Wednesday
* On the web site

* Worth five points

Exams
* Graded and returned Friday
* Statistics in slides for last class

COMP 210, Spring 2002

Files and Directories

(at the end)

Simple model of a file system
~ Files represented as symbols
- Directory is a list of its contents

;; a directory is a structure

;; (make-dir name contents
:»where nameisas
;; contents is aHis
(define-structd

PO
and directorie
hame contents)

;; a lofd (list-of-files-and-directoyies) is one of

;; —empty, or

;; —(cons fr) where fis a file and r is an lofd, or
;; —(cons fr) where fis adir and ris an lofd

COMP 210, Spring 2002

;; a file is a symbol

Files and Directories
TMT@ for File System
4

(define (f a-file ...) ...) ;; simple template for file
A
(define (g a-dir ...) ;; structure template for dir
(... (dir-name a-dir) ...

... (h (dir-contents a-di
4

(define (h a-lofd ...)
(cond
[(empty? a-lofd) e]
[(symbol? (first a-lofd))
. (f (first a-lofd) ...) ...

of several types for lofd

::.(h (resta-lofd) ...) ...] -
[(dir? (first atofdy—— “Write/the program

... (g (firsta-lofd) ...) ... epth-dir : dir -> number
. (hw > Purpose: return nesting depth of
;; most deeply nested directory

(define (count-files a-dir) ...)

COMP 210, Spring 2002 3

Files and Directories
Depth-dir

- Worite a program that consumes a dir and produces a number
indicating how many levels of nested directories are in the tree

;; depth-dir: dir ->number
(define (deptff-dir a-dir)
(add1 (depth-lofd (dir=

;; depth-lofd:
(define (depth-lofd a-lofd)
(cond
[(empty? a-lofd) 0]
[(symbol? (first a-lofd))
(depth-lofd _(rest a-lofd))]
[(dir? (first a-lofd))
(max (depth-dir
(depth-lofd

(first a-lofd))
-lof

))

COMP 210, Spring 2002 4

Programs with Multiple Complex Arguments

So far,
* Programs have consumed, at most, one complicated argument

* In flatten, you needed a helper that consumed two lists
~ This lead to append

;; append: list list -> list
;; Purpose: consumes two lists and produces a single list
" that contains all the elements of the first argument

" followed b
(define (append list1
(cond
[(empty? list1) list2

[(cons? list1) (cons (first list1) (append (rest list1

)
)

Notice how append uses |list2

COMP 210, Spring 2002 5

Programs with Multiple Complex Arguments

;; append: list list -> list
;; Purpose: consumes two lists and produces a single list
i that contains all the elements of the first argument
" followed b ent
(define (append list1 list2)
(cond
[(empty? list1) list2]
[(cons? list1) (cons (first list1) (append (rest list1) list2))]

)
)

* Inappend, the second argument is never treated as a list

— Passed along as second argument in recursive call

* Append follows the standard list template

COMP 210, Spring 2002 6

Programs with Multiple Complex Arguments

Another example
;; a pointis
;; (make-point x y)
;; Where x and y are numbers
(define-struct point (x y))

;; make-points : list-of-numbers list-of-numbers -> list-of-points

;; Purpose: consumes two lists of numbers, interprets the first as

; a list of x coordinates, the second as a list of y coordinates,
" and produces the corresponding list of points

(define (make-points x-list y-list ...)

What template should we use?

* Make-points manipulates both x-list and y-list

" Make-points only works if (= (length x-list) (length y-list))

COMP 210, Spring 2002

Programs with Multiple Complex Arguments

Another example

* This simplifies the template
(define (f x-list y-list ...
(cond /

[(empty? x-list) o]

[(cons? x-list)
... (first x-list) ... (first y-list) ...

.. (f_(rest x-list) (resty-list) ...) ...

)
)

Only need to test one argument

]

* We can complete the program from the template

- Fill in the blanks
_. Ellide unneeded stuff

COMP 210, Spring 2002

Programs with Multi

Complex Arguments

(define (make-points x-list y-list)
(cond
[(empty? x-list) empty]
[(cons? x-list)
(cons (make-point (first x-list) (first y-list)
(make-points (rest x-list) (rest y-list)))]

But, ...
* Template contained problem specific-knowledge

~ This violates our (previous) assumption that templates follow
(just) the data structure

~ Here, template depended on set of arguments to the program
* This is a leap from what we've done in the past

COMP 210, Spring 2002 9

Programs with Multiple Complex Arguments

Another example

;; merge : list-of-numbers list-of-numbers -> list-of-numbers

;; Purpose: consumes two lists of numbers, assumed to be in

" ascending order by value, and produces a single list of
- numbers that contains all the elements of the input lists
0 (including duplicates) in ascending order by value
(define (merge a-lon1 a-lon2) ...)

* Clearly, merge must look inside both lists
* Clearly, the lists can have different length

~ (merge empty (cons 1 empty)) should be (cons 1 empty)
* How do we write a template for this problem?

~ Study the possibilities

COMP 210, Spring 2002 10

Programs with Multiple Complex Arguments

Merge
* Consider the possibilities
* 2 inputs, 2 cases in the definition 0 4 cases & 4 examples
(merge empty empty) O empty
(merge empty (list15)) O (list15)
(merge (list 1 5) empty) O (list15)
(merge (list 1 5) (list 3)) O (list 1 3 5)

* Merge must handle all of these possibilities
— Cond construct with four clauses
~ Must work out tests that distinguish them

COMP 210, Spring 2002 11

Programs with Multiple Complex Arguments

Merge
* Questions for list X list

(empty? a-lon2) (cons? a-lon2)

(and (and

(empty? a-lonl)

(empty? a-lonl)
(empty? a-lon2))

(empty? a-lonl)
(cons? a-lon2))

(cons? a-lonl)

(and
(cons? a-lonl)
(empty? a-lon2))

(and
(cons? a-lonl)
(cons? a-lon2))

The template must include (and handle) all these cases

COMP 210, Spring 2002

Programs with Multiple Complex Arguments

Merge - the template

(define (f a-lon1 a-lon2)
(cond
[(and (empty? a-lon1) (empty? a-lon2)) ...]

[(and (empty? a-lon1) (cons? a-lon2))
... (first a-lon2) ... (rest a-lon2) ...]

[(and (cons? a-lon1) (empty? a-lon2)
... (firsta-lon1) ... (resta-lon1) ...]

[(and (cons? a-lon1) (cons? a-lon2))
... (first a-lon1) ... (first a-lon2) ...
... (rest a-lon1) ... (rest a-lon2) ...]

)
)

Structure is clear, but where are the recursion relationships?

COMP 210, Spring 2002 13

Programs with Multiple Complex Arguments

Merge - the template

(define (f a-lon1 a-lon2)

(cond Empty lists
[(and (empty? a-lon1) (empty? a-lon2)) ...] implies no
[(and (empty? a-lon1) (cons? a-lon2)) ReUIFsa-lon2
... (first a-lon2) ... (rest a-lon2) ...] and empty.
[(and (cons? a-lon1) (empty? a-lon2)) Same case on
... (firsta-lon1) ... (resta-lon1) ...] a-lonl
[(and (cons? a-lon1) (cons? a-lon2)) Recur on both

... (first a-lon1) ... (first a-lon2) ...
... (rest a-lon1) ... (rest a-lon2) ...]
(f a-lonl (rest a-lon2))
(f (rest a-lon1) a-lon2))
(f (rest a-lon1) (rest a-lon2))

several cases

COMP 210, Spring 2002 14

Programs with Multiple Complex Arguments

Merge - the template

(define (f a-lon1 a-lon2)
(cond
[(and (empty? a-lon1) (empty? a-lon2)) ...]
[(and (empty? a-lon1) (cons? a-lon2))
... (firsta-lon2) ... (f a-lon1 (rest a-lon2)) ...]
[(and (cons? a-lon1) (empty? a-lon2))
... (firsta-lon1) ... (f (rest a-lon1) a-lon2)...]
[(and (cons? a-lon1) (cons? a-lon2))
... (first a-lon1) ... (first a-lon2) ...
... (f a-lon1 (rest a-lon2)) ...
... (f (rest a-lon1) a-lon2) ...
... (f (rest a-lon1) (rest a-lon2)) ...]

You fill in the rest to make merge work
COMP 210, Spring 2002

15

