
COMP 210, Spring 2002
Lecture 13: Files, Directories, Folders, and all that …

Reminders
• Half homework due Wednesday
• Exams handed back today

Review
1. We looked at parent-centric family trees.

Brief Reflection and Philosophical Interlude
In defining family trees, we looked first at a simple, child-centric model.
We learned to answer some questions with it. We expanded it to include
information not originally part of our model. We discovered that some
questions could not be answered from the child-centric model (such as
number-of-descendants). We formulated another kind of family tree–the
parent-centric model. We used it to answer some questions that could not be
answered from child-centric trees. (count-members is number-of-
descendants + 1.)

This is the reality of developing computer programs. We propose a model,
work with it long enough to discover its shortcomings, and refine it to create
a new model. Sometimes, we will propose simple extensions of the existing
model; at other times, we will completely discard our earlier models.

From the perspective of programming patterns, we saw a new pattern in the
final model for parent-centric family trees–-mutually recursive data
definitions. The recursion in the data definition is, of course, reflected in
the template and in the code. You should expect the homework for this
week to include mutually recursive programs.

Another Recursive Structure
Let's consider another recursive kind of information that computers model
on a daily basis. What about the user interface to a file system? (For the
purposes of COMP 210, a file system is just the collection of files that reside
on the non-volatile storage of a digital computer system. The notion of files
should be familiar to most of you. Note, however, that we haven't seen files
in our dealings with DrScheme, except as a place to store some Scheme code
between sessions with the Doctor.

File systems are created, manipulated, and destroyed by computer
programs–-in most cases, the operating system of the computer. What sort
of objects do you find in a file system? A typical file system has files (of
course) and directories that hold files. A simple model for the file system
might represent files by their names (symbols in Scheme), and directories as
lists of their contents. Can a directory contain a directory? (For you Mac
users, think folders.) How deeply can you nest directories (folders)?
[Several famous operating systems placed arbitrary limits on the depth of
nesting in the file system, using the justification that "no one would need
more than k levels of directories." In reality, these limits usually came from
using poor, non-recursive models to represent the name space of the file
system.]

;; a file is a symbol

;; a directory is one of
;; –- empty, or
;; –- (cons f r) where f is a file & r is a directory, or
;; –- (cons f r) where f & r are both directories.
;; [Since we can use cons, no define-struct is needed.]

Of course, the template for programs that manipulate files and directories
follows from these data definitions.

(define (f a-file …) …)

(define (g a-dir …)
 (cond
 [(empty? a-dir) …]
 [(file? (first a-dir))

 … (f (first a-dir)) … (g (rest a-dir)) …]What's this? Try "symbol?"
since we didn't define a file
structure.

 [(cons? (first a-dir))
 … (g (first a-dir)) … (g (rest a-dir)) …]

))

We could use this to write programs. First, however, we should ask if it is
adequate. For example, what is a directory's name? Oooops. The model is
not sophisticated enough to allow us to name directories or folders, so it is
clearly unusable. (Even though it has the right basic structure.

Let's try again.

;; a directory is a structure
;; (make-dir name contents)
;; where name is a symbol and contents is a list of files and directories
(define-struct dir (name contents))

;; a lofd (list-of-files-and-directories) is one of
;; –- empty, or
;;; –- (cons f r), where f is a file and r is a lofd, or
;; –- (cons f r), where f is a directory and r is a lofd

We're not going to change the definition of files, since it doesn't materially
impact the structure of files and directories. In the homework assignment,
you will do this.

To file

The template for this set of data definitions:

(define (f a-file) …)

(define (g a-dir …)
 (… (dir-name a-dir) … (h (dir-contents a-dir) .,.) …)

(define (h a-lofd …)
 (cond
 [(empty? a-lofd) …]
 [(symbol? (first a-lofd))

 … (f (first a-lofd)) … (h (rest a-lofd)) …]
 [(dir? (first a-lofd))

 … (g (first a-lofd)) … (h (rest a-lofd)) …]
))

Write the program count-files which consumes a directory and returns the
number of files in that directory tree.

