
COMP 210, Spring 2002
Lecture 12: Parent-centric Family Trees

Reminders:
• See PowerPoint Slides

Review
1. Spent some time talking about the test
2. Finshed up child-centric family trees. (We have seen 2 versions of this

structure; the first was simpler, the second provided some additional
functionality.)

Parent-centric Family Trees
So far, our family trees are only of interest to children. All edges run from
child to parent. (In fact, this is natural. Children are the ones who get to
study family trees. Parents usually know more details about their
descendants than anyone else wants to know. The difference between a
parent's ancestors and a child's ancestors is fairly obvious to the child's
parents!)
Assume we wanted to reverse the edges in our family tree and create an
information structure that would allow us to ask questions about a person's
descendants. What sort of data-definition would we write?

;; a parent is a structure
;; (make-parent name year eyes children)
;; where name and eyes are symbols, year is a number, and
;; children is a list-of-children
(define-struct parent (name year eyes children)

We also need a data-definition for list-of-children

;; a list-of-children is either
;; –- empty, or
;; –- (cons f r)
;; where f is a parent and r is a list-of-children
;; [Since we used cons, we don't need the define-struct …]

These data-definitions refer to each other. We say that they are mutually
dependent or mutually recursive. [The definition of list-of-children is also
self-referential (recursive).]

;; example data
(make-parent 'Tom 1930 'blue

(cons (make-parent 'Ann 1952 'green
 (cons (make-parent 'Mary 1975 'green empty) empty))

 (cons (make-parent 'Mike 1955 'blue empty)
 empty)))

Notice that the number of
children is indeterminate.
With the child tree, the set
of parents was fixed and
small, so a structure made
sense. Here, we use a list.

What about a set of templates for these data definitions?

;; (define (f a-parent …)
;; (parent-name a-parent) …
;; (parent-year a-parent) …
;; (parent-eyes a-parent) …
;; (g (parent-children a-parent)) …)

;; (define (g a-loc)
;; (cond
;; [(empty? a-loc) …]
;; [(cons? a-loc) … (f (first a-loc)) … (g (rest a-loc)) …]))

The template for a mutually recursive data definition contains one template
for each constituent data definition. To reflect the recursion in the data
definition, we have added the calls to f and g. When the template uses a
selector function that refers to an instance of the other data-definition, we
have included the appropriate call to the template for that data-definition. In
this way, the template reflects the coupling of the data-definitions.

Let's develop the program count-members which consumes a parent and
returns the number of people in the family tree rooted at the parent.

;; count-members: parent -> number
;; Purpose: tally the number of people in the tree rooted at parent
(define (count-members a-parent)
 (+1 (count-children (parent-children a-parent)))
)

;; count-children: list-of-children -> number
;; Purpose: compute how many people are in the family trees rooted at
children
(define (count-children a-loc)
 (cond
 [(empty? a-loc) 0]
 [(cons? a-loc)

 (+
 (count-members (first a-loc))
 (count-children (rest a-loc)))]

))

The template gives us the code.

Now, write at-least-two-children, a program that consumes a parent and
returns a list of the names of all parents in the tree with at least two children.

;; at-least-two-children: parent -> list-of-symbol
;; Purpose: return a list of all people in the tree with at least 2 children
(define (at-least-two-children a-parent)
 (cond
 [(> (num-children (parent-children a-parent)) 2)
 (cons (parent-name a-parent)

 (children-with-two-children (parent-children a-parent)))]
 [else (children-with-two-children (parent-children a-parent))]
))

;; children-with-two-children: list-of-children -> list-of-symbol
;; Purpose: returns a list of all children with at least 2 children
(define (children-with-two-children a-loc)
 (cond
 [(empty? a-loc) empty]
 [(cons? a-loc)

 (append (at-least-two-children (first a-loc))
 (children-with-two-children (rest a-loc)))]))

;; num-children: list-of-children -> num
;; Purpose: counts how many children are in the list
(define (num-children a-loc)
 (cond
 [(empty? a-loc) 0]
 [else (+ 1 (num-children (rest a-loc)))]))

Append takes two or more
lists and returns the list that
has the elements of the first,
followed by the elements of
the second, followed by …

This is just length–-a
Scheme built-in function

