
COMP 210, Spring 2002 1

Administrative Notes
First Exam
• Wednesday, 2/13/2002

→ In class, in DH 1070
→ Closed notes, closed book

• Covers Sections 1-12 of the book
→ Not family trees
→ Includes natural numbers (lab lecture + today)

• Covers class lectures, lab lectures, homework 1, 2 & 3
• Review session tonight, 7:30 in DH

→ (room will be posted on door)

COMP 210, Spring 2002 2

Back to Family Trees
So far, our trees have been rather biased
• Have a child-centric view of the world

→ All links run from parent to child
• Another view is possible – parent-centric trees

Which one is the right picture?

Pat Mike Ann Joe

Susan Tom

Mary

Child-centric tree

Pat Mike Ann Joe

Susan Tom

Mary

Parent-centric tree

COMP 210, Spring 2002 3

Parent-centric Family Trees
Data definitions are natural

Complication
• Child → parent is a one-to-one mapping
• Parent → child is an onto mapping

;; a parent is a structure
;; (make-parent name year eye-color children)
;; where name & eye-color are symbols,
;; year is a number, and children is a list of parent

;; a list-of-parent is either
;; – empty, or
;; – (cons f r)
;; where f is a parent and r is a list-of-parent
;; We will use Scheme’s built-in list construct

COMP 210, Spring 2002 4

Parent-centric Family Trees
;; a parent is a structure
;; (make-parent name year eye-color children)
;; where name & eye-color are symbols,
;; year is a number, and children is a list of parent

;; a list-of-parent is either
;; – empty, or
;; – (cons f r)
;; where f is a parent and r is a list-of-parent
;; We will use Scheme’s built-in list construct

Mutually recursive data structures
• Makes programming a little more complex
• Two data-definitions means two templates, two programs, …

COMP 210, Spring 2002 5

Mutually recursive data structures
• Template reflects the data
• Use it in the same basic methodology

Parent-centric Family Trees
(define (f a-parent …)
 … (parent-name a-parent) …
 … (parent-year a-parent) …
 … (parent-eye-color a-parent) …
 … (g (parent-children a-parent) …) …)

(define (g a-loc)
 (cond
 [(empty? a-loc) …]
 [(cons? a-loc)

… (f (first a-loc) …) …
… (g (rest a-loc) …)]))

COMP 210, Spring 2002 6

Develop count-members:

Parent-centric Family Trees

;; count-members: parent -> number
;; Purpose: tally people in tree rooted at parent
(define (count-members a-parent)
 (+1 (count-children (parent-children a-parent)))

;; count-children: list-of-parent -> number
;; Purpose: tally people in all the family trees rooted in the
;; list-of-parents passed as an argument
(define (count-children a-loc)
 (cond
 [(empty? a-loc) 0]
 [(cons? a-loc)

(+ (count-members (first a-loc))
 (count-children (rest a-loc))]))

Next class: we will
work more with
parent trees

COMP 210, Spring 2002 7

Parent-centric Family Trees
What about at-least-two-children
• Consumes a parent
• Returns a list of the names of all parents with ≥ 2 kids
• We’ll have 2 programs (from the data-definition & templates)

;; at-least-2-children: parent -> list-of-symbol
;; Purpose: build a list of the names of all parents with
;; two or more children
(define (at-least-2-children a-parent) …)

;; children-with-2-children: list-of-parent -> list-of-symbol
;; Purpose: consumes a list of parent & returns a list
;; containing the subset of the input list that have >= 2 kids
(define (children-with-2-children a-loc) …)

COMP 210, Spring 2002 8

Parent-centric Family Trees
Problem-specific knowledge
• At-least-2-children

→ Need to count immediate descendents
→ Cons “parent-name” onto list if > 1 descendant

• Suggests a helper function (> 1 data item in function)

→ Recur into the next generation

• Children-with-2-children
→ Test the “first” element
→ Recur on the rest
→ Combine the two lists

COMP 210, Spring 2002 9

The first helper function
• Builds on the classic list template

Parent-centric Family Trees

;; num-in-list: list-of-parent -> number
;; Purpose: count the number of parents in the list
(define (num-in-list a-lop)
 (cond
 [(empty? a-loc) …]
 [(cons? a-loc)

… (first a-loc) …
(num-in-list (rest a-loc))]

)
)

;; num-in-list: list-of-parent -> number
;; Purpose: count the number of parents in the list
(define (num-in-list a-lop)
 (cond
 [(empty? a-lop) 0]
 [(cons? a-lop)
 (+ 1

 (num-in-list (rest a-lop)))]
)
)

COMP 210, Spring 2002 10

The second helper function
• Consumes two lists

;; combine: list list -> list
;; Purpose: combine the argument lists into one list
(define (combine list1 list2) …)

Parent-centric Family Trees

Now, you develop the rest of the code …

;; combine: list list -> list
;; Purpose: combine the argument lists into one list
(define (combine list1 list2) …)

What template do we use?

→ Key point: we never look inside list2
→ We can pass it along unchanged!
→ Use the standard list template

;; combine: list list -> list
;; Purpose: combine the argument lists into one list
(define (combine list1 list2)
 (cond
 [(empty? list1) …]
 [(cons? list1)

… (first list1) …
… (combine (rest list1) …)]

)
)

;; combine: list list -> list
;; Purpose: combine the argument lists into one list
(define (combine list1 list2)
 (cond
 [(empty? list1) list2]
 [(cons? list1)

(cons (first list1)
 (combine (rest list1) list2)]

)
)

COMP 210, Spring 2002 11

Parent-centric Family Trees
Parent-centric trees don’t solve all problems, either
• Number of cousins:

→ Consume parent and symbol
→ Return number of cousins that “symbol” has

• Kind-of-cousin:
→ parent and 2 symbols
→ Return the relationship (second-cousin, third-cousin, …)

• Lost-parents
→ Consume parent
→ Return a list of all people with only one parent

To do real genealogy, need both perspectives

Cannot even ask
the question in
parent-centric
tree

