Administrative Notes

First Exam

* Wednesday, 2/13/2002
- Inclass, in DH 1070
- Closed notes, closed book

* Covers Sectons 1-12 of the book
~ Not family trees

~ Includes natural numbers (lab lecture + today)
* Covers class lectures, lab lectures, homework 1, 2 & 3
* Know the pledge !

COMP 210, Spring 2002 1

Natural Numbers

210 so far ...

* Simple algebra (area of DH 1070)

* Single structures (planes, brands, points, ...)
* Recursive data structures (lists, trees)

Programming with these data structures
Natural numbers involves “structural recursion”

* For 210, a natural number is a non-negative integer
* These numbers have a natural recursive structure

* How does this fit into our computational model?
~ Why bring this up, since it doesn't fit the models?

COMP 210, Spring 2002 2

Natural Numbers

Data analysis fMI Numbers:
:; a natural number is either

- zero, or

- if N is a natural number, then (addl N) is a natural humber
., we can use Scheme's built-in implementation of numbers

Structure of the natural numbers
* Recursive, like the definition of a list
* Resembles the sketch of an induction proof

COMP 210, Spring 2002

Pr'ogmmming with the Natural Numbers

Structural recursion on the Natural Numbers
* We can build a template like the list template

;; template for Natural Numbers

(define (f a-natnum ...) What’s this? Where did it
(cond come from?
[(= 0 a-nathum) ...]

[(> 0 a-natnum) (f (sub1 a-natnum)...)]

)

Can do structural recursion on natural numbers

~ Recursion in the data is implicit, not explicit
* Why do this?

~ To simplify reasoning about the resulting program

COMP 210, Spring 2002

_Programming with the Natural Numbers
Factorial

* Factorial(n) =n*(n-1)* .*2*1

* Factorial(0) = 1

;; Factorial: N um -> NatNum
(define (Factorial N) Handles the special case
(cond whenN=0

(=0 N)_1]

(< 0 Nﬁw(sum N))]
)

Can write this test as (zero? N)

* Why does this terminate?
~ Intuition says it halts

~ Calls to Factorial cannot go on forever

COMP 210, Spring 2002 5

Pr'ogramming with th ural Numbers

;; Factorial: N um -> NatNum
(define (Factorial N)
(cond
[0 N) 1]
[> 0 N) (* N (factorial (sub1 N))]

)

Sketch of Proof

* Factorial(N) has two cases
~ N=0and it returns 1
-~ N»>O

-+ Since N is a natural number, we know it can be derived from
O by repeated calls to add1

* So, repeated calls to subl must eventually produce O
+ Code always recurs on (subl N) O recursion halts

COMP 210, Spring 2002 6

Progr'amming with th ural Numbers

;; Factorial: N um -> NatNum
(define (Factorial N)
(cond
(=0 N) 1]
[> 0 N) (* N (factorial (sub1 N))]
)

The primary reasons for introducing the Natural Numbers in
COMP 210 and for working with them are:

* To add formalism to our thinking about structural
recursion

* To demonstrate that we don’t need a data structure to
perform structural recursion; we just need data with a
structure - either explicit or implicit

* To add another dimension to our understanding of
arithmetic

COMP 210, Spring 2002

Back to Family Trees

So far, our trees have been rather biased

* Have a child-centric view of the world
~ All links run from parent to child
* Another view is possible - parent-centric trees

Susan Tom Susan Tom
Pat Mike Ann Joe Pat Mike Ann Joe
Mary Mary
Child-centric tree Parent-centric tree

Which one is the right picture?

COMP 210, Spring 2002

Parent-centric Family Trees

Data definitions ar

;; aparent is a structure
;7 (make-parent name year eye-color children)
;; where name & eye-color are symbols,

5 year is a number, and children is a list of parent

;; a list-of-parent is either
;; —empty, or
;7 —(consfr)
;7 Where fis aparent and ris alist-of-parent
;; We will use Scheme’sbuilt-in list constr

COMP 210, Spring 2002

Parent-centric

;; aparent is astructure
;; (make-parent name year eye-color children)
;; where name & eye-color are symbols,

3 year is a number, and children is a list of parent

;; a list-of-parent is either
;; —empty, or
;7 —(consfr)
;7 where fis aparent and ris alist-of-parent
;; We will use Scheme’sbuilt-in list constr

Mutually recursive data structures
* Makes programming a little more complex

* Two data-definitions means two templates, fwo programs, ...

COMP 210, Spring 2002

10

Parent-centric Family Frees

(define (f a-parent...)
.. (parent-name a-parent) ...
.. (parent-year a-parent)...
... (parent-eye-color a-parent) ...
.. (g (parent-children a-parent) ...) ...)

(define (g a-loc)
(cond
[(empty? a-loc) ...]
[(cons? a-loc)
... (f (first a-loc) ...) ...

Mutually recursive data structures
* Template reflects the data
* Use it in the same basic methodology

COMP 210, Spring 2002 11

Parent-centric Family Trees

Develop count-members:

;; count-members: par -> number
;; Purpose: tally p le in tree rooted at parent
(define (count-members a-parent)

(+1 (count-children (parent-children a-parent)))

;; count-ghildren: list-of-parent -> number
;; Purposg: tally people in all the family trees rooted in the
5 list-of-parents pass argument
(define (count-children a-loc)
(cond
[(empty? a-loc) 0]
[(cons? a-loc)
(+ (count-members (first a-loc))
(count-children (r

Next class: we will
ork more with
parent trees

COMP 210, Spring 2002 12

