
COMP 210, Spring 2002 1

Administrative Notes
First Exam
• Wednesday, 2/13/2002

→ In class, in DH 1070
→ Closed notes, closed book

• Covers Sectons 1-12 of the book
→ Not family trees
→ Includes natural numbers (lab lecture + today)

• Covers class lectures, lab lectures, homework 1, 2 & 3
• Know the pledge !

COMP 210, Spring 2002 2

Natural Numbers
210 so far …
• Simple algebra (area of DH 1070)
• Single structures (planes, brands, points, …)
• Recursive data structures (lists, trees)

Natural numbers
• For 210, a natural number is a non-negative integer
• These numbers have a natural recursive structure
• How does this fit into our computational model?

→ Why bring this up, since it doesn’t fit the models?

Programming with these data structures
involves “structural recursion ”

COMP 210, Spring 2002 3

Data analysis for Natural Numbers:
;; a natural number is either
;; – zero, or
;; – if N is a natural number, then (add1 N) is a natural number
;; we can use Scheme’s built-in implementation of numbers

Structure of the natural numbers
• Recursive, like the definition of a list
• Resembles the sketch of an induction proof

Natural Numbers

COMP 210, Spring 2002 4

What’s this? Where did it
come from?

Structural recursion on the Natural Numbers
• We can build a template like the list template

• Can do structural recursion on natural numbers
→ Recursion in the data is implicit, not explicit

• Why do this?
→ To simplify reasoning about the resulting program

Programming with the Natural Numbers

;; template for Natural Numbers
(define (f a-natnum …)
 (cond
 [(= 0 a-natnum) …]
 [(> 0 a-natnum) (f (sub1 a-natnum) …)]
))

COMP 210, Spring 2002 5

Can write this test as (zero? N)

Programming with the Natural Numbers
Factorial
• Factorial(n) = n * (n-1) * … * 2 * 1
• Factorial(0) = 1

• Why does this terminate?
→ Intuition says it halts
→ Calls to Factorial cannot go on forever

;; Factorial: NatNum -> NatNum
(define (Factorial N)
 (cond
 [(= 0 N) 1]
 [(< 0 N) (* N (Factorial (sub1 N))]
))

Handles the special case
when N = 0

COMP 210, Spring 2002 6

Programming with the Natural Numbers

Sketch of Proof
• Factorial(N) has two cases

→ N = 0 and it returns 1
→ N > 0

• Since N is a natural number, we know it can be derived from
0 by repeated calls to add1

• So, repeated calls to sub1 must eventually produce 0
• Code always recurs on (sub1 N) ⇒ recursion halts

;; Factorial: NatNum -> NatNum
(define (Factorial N)
 (cond
 [(= 0 N) 1]
 [(> 0 N) (* N (factorial (sub1 N))]
))

COMP 210, Spring 2002 7

Programming with the Natural Numbers

Why does this produce the correct answer?
• Factorial(N) has two cases

→ N = 0 and it returns 1
→ N > 0

• As it recurs, it creates another term in the formula
• It combines them all with multiplication
• This produces the computation n * (n-1) * … * 2 * 1

;; Factorial: NatNum -> NatNum
(define (Factorial N)
 (cond
 [(= 0 N) 1]
 [(> 0 N) (* N (factorial (sub1 N))]
))

The primary reasons for introducing the Natural Numbers in
COMP 210 and for working with them are:

• To add formalism to our thinking about structural
recursion

• To demonstrate that we don’t need a data structure to
perform structural recursion; we just need data with a
structure – either explicit or implicit

• To add another dimension to our understanding of
arithmetic

COMP 210, Spring 2002 8

Back to Family Trees
So far, our trees have been rather biased
• Have a child-centric view of the world

→ All links run from parent to child
• Another view is possible – parent-centric trees

Which one is the right picture?

Pat Mike Ann Joe

Susan Tom

Mary

Child-centric tree

Pat Mike Ann Joe

Susan Tom

Mary

Parent-centric tree

COMP 210, Spring 2002 9

Parent-centric Family Trees
Data definitions are natural

Complication
• Child → parent is a one-to-one mapping
• Parent → child is an onto mapping

;; a parent is a structure
;; (make-parent name year eye-color children)
;; where name & eye-color are symbols,
;; year is a number, and children is a list of parent

;; a list-of-parent is either
;; – empty, or
;; – (cons f r)
;; where f is a parent and r is a list-of-parent
;; We will use Scheme’s built-in list construct

COMP 210, Spring 2002 10

Parent-centric Family Trees
;; a parent is a structure
;; (make-parent name year eye-color children)
;; where name & eye-color are symbols,
;; year is a number, and children is a list of parent

;; a list-of-parent is either
;; – empty, or
;; – (cons f r)
;; where f is a parent and r is a list-of-parent
;; We will use Scheme’s built-in list construct

Mutually recursive data structures
• Makes programming a little more complex
• Two data-definitions means two templates, two programs, …

COMP 210, Spring 2002 11

Mutually recursive data structures
• Template reflects the data
• Use it in the same basic methodology

Parent-centric Family Trees
(define (f a-parent …)
 … (parent-name a-parent) …
 … (parent-year a-parent) …
 … (parent-eye-color a-parent) …
 … (g (parent-children a-parent) …) …)

(define (g a-loc)
 (cond
 [(empty? a-loc) …]
 [(cons? a-loc)

… (f (first a-loc) …) …
… (g (rest a-loc) …)]))

COMP 210, Spring 2002 12

Develop count-members:

Parent-centric Family Trees

;; count-members: parent -> number
;; Purpose: tally people in tree rooted at parent
(define (count-members a-parent)
 (+1 (count-children (parent-children a-parent)))

;; count-children: list-of-parent -> number
;; Purpose: tally people in all the family trees rooted in the
;; list-of-parents passed as an argument
(define (count-children a-loc)
 (cond
 [(empty? a-loc) 0]
 [(cons? a-loc)

(+ (count-members (first a-loc))
 (count-children (rest a-loc))]))

Next class: we will
work more with
parent trees

