Administrative Notes

First Exam

- Wednesday, 2/13/2002
\rightarrow In class, in DH 1070
\rightarrow Closed notes, closed book
- Covers Sectons 1-12 of the book
\rightarrow Not family trees
\rightarrow Includes natural numbers (lab lecture + today)
- Covers class lectures, lab lectures, homework 1, 2 \& 3
- Know the pledge!

Natural Numbers

210 so far ...

- Simple algebra (area of DH 1070)
- Single structures (planes, brands, points, ...)
- Recursive data structures (lists, trees)

- For 210, a natural number is a non-negative integer
- These numbers have a natural recursive structure
- How does this fit into our computational model?
\rightarrow Why bring this up, since it doesn't fit the models?

Natural Numbers

Data analysis for Natural Numbers:
;i a natural number is either
:i - zero, or
ii - if N is a natural number, then (add1 N) is a natural number
:; we can use Scheme's built-in implementation of numbers

Structure of the natural numbers

- Recursive, like the definition of a list
- Resembles the sketch of an induction proof

Programming with the Natural Numbers

Structural recursion on the Natural Numbers

- We can build a template like the list template

- Can do structural recursion on natural numbers
\rightarrow Recursion in the data is implicit, not explicit
- Why do this?
\rightarrow To simplify reasoning about the resulting program

Programming with the Natural Numbers

Factorial

- Factorial $(n)=n$ * $(n-1)$ * ... * 2 * 1
- Factorial(0) $=1$ K

\rightarrow Intuition says it halts
\rightarrow Calls to Factorial cannot go on forever

Programming with the Natural Numbers

;; Factorial: NatNum -> NatNum
(define (Factorial N)
(cond
[$=0$
N) 1]
[(> 0
))

Sketch of Proof

- Factorial(N) has two cases
$\rightarrow \mathrm{N}=0$ and it returns 1
$\rightarrow \mathrm{N}>0$
- Since N is a natural number, we know it can be derived from 0 by repeated calls to add1
- So, repeated calls to sub1 must eventually produce 0
- Code always recurs on (sub1 N) \Rightarrow recursion halts
;; Factorial: NatNum -> NatNum (define (Factorial N)
(cond
[(= 0
N) 1]
[(> $0 \quad \mathrm{~N}) \quad$ (* $\mathrm{N}($ factorial (sub1 N$)$)]
))
The primary reasons for introducing the Natural Numbers in COMP 210 and for working with them are:
- To add formalism to our thinking about structural recursion
- To demonstrate that we don't need a data structure to perform structural recursion; we just need data with a structure - either explicit or implicit
- To add another dimension to our understanding of arithmetic

Back to Family Trees

So far, our trees have been rather biased

- Have a child-centric view of the world
\rightarrow All links run from parent to child
- Another view is possible - parent-centric trees

Child-centric tree

Parent-centric tree

Which one is the right picture?

Parent-centric Family Trees

Data definitions are natural
;; a parent is a structure
;; (make-parent name year eye-color children)
;; where name \& eye-color are symbols,
; \quad year is a number, and children is a list of parent
;; a list-of-parent is either
;; - empty, or
;; - (cons fr)
;; where f is a parent and r is a list-of-parent ;; We will use Scheme's built-in list construct

Parent-centric Eamily Trees

;; a parent is a structure
;; (make-parent name year eye-color children)
;; where name \& eye-color are symbols,
;; year is a number, and children is a list of parent
;; a list-of-parent is either
;; - empty, or
;; - (cons fr)
;; where f is a parent and r is a list-of-parent
;; We will use Scheme's built-in list construct

Mutually recursive data structures

- Makes programming a little more complex
- Two data-definitions means two templates, two programs, ...

Parent-centric Family Trees

(define (f a-parent ...)
... (parent-name a-parent) ...
... (parent-year a-parent) ...
... (parent-eye-color a-parent) ...
... (g (parent-children a-parent) ...) ...)
(define (g a-loc)
(cond
[(empty? a-loc) ...]
[(cons? a-loc)
... (f (first a-loc) ...) ...
$\ldots(\mathrm{g}($ rest a-ioc) ... $)]))$
Mutually recursive data structures

- Template reflects the data
- Use it in the same basic methodology

Parent-centric Family Trees

Develop count-members:
;; count-members: parent -> number
;; Purpose: tally people in tree rooted at parent (define (count-members a-parent)
(+1 (count-children (parent-children a-parent)))
;; count-children: list-of-parent -> number
;; Purpose: tally people in all the family trees rooted in the
;; list-of-parents passed as an argument
(define (count-children a-loc)
(cond
[(empty? a-loc) 0]
[(cons? a-loc)
(+ (count-members (first a-loc))
(count-children (resta-loc))]))

Next class: we will work more with parent trees

