
COMP 210, Spring 2002
Lecture 10: More on Trees

Reminders:
• Homework assignment next Friday 2/15/02
• Exam will be 2/13/2002, in class–closed-notes, closed-book
� Covers sections 1-12 (natural numbers but not family trees)

• Review will be Monday at 7:30pm, location to be announced

Review
⇒ Started on family trees

<You are responsible for this lecture on the second exam>

Pre-load Side Board with

;; a ftn (for family-tree node) is either
;; – a symbol, or
;; – (make-ftn name father mother)
;; where name is a symbol and father & mother are both ftns
(define-struct ftn (name mother father))

;; Examples
'Mary
(make-ftn 'Ann 'Susan 'Tom)
(make-ftn 'Mary (make-ftn 'Ann 'Susan 'Tom) 'Joe)
(make-ftn 'Pat 'Susan 'Tom)
(make-ftn 'Mike 'Susan 'Tom)

Mike

Susan

Pat

Tom

Mary

Ann Joe

Start of the second third of
COMP 210 –- the first
lecture for the second exam.

Template for FTNs
What would the template for this ftn contain?

(define (f … a-ftn …)
 (cond
 [(symbol? a-ftn) …]
 [(ftn? a-ftn) …

(ftn-name a-ftn) …
(f (ftn-mother a-ftn)) …
(f (ftn-father a-ftn)) …]

))

In-family?

;; in-family?: ftn symbol � boolean
;; Purpose: determine if the symbol is in the ftn
;; return true if found and false otherwise
(define (in-family? a-ftn kin)
 (cond
 [(symbol? a-ftn) (symbol=? a-ftn kin)]
 [(ftn? a-ftn)

 (or
(symbol=? (ftn-name a-ftn) kin)
(in-family? (ftn-mother a-ftn) kin)
(in-family? (ftn-father a-ftn) kin)
)]))

Should we consider writing a helper function to compare the names? After
all, the function occurs in two places. The function would look something
like

(define (compare-names n1 n2)
 (symbol=? n1 n2))

This function looks a little ridiculous. It simply passes n1 and n2 on to the
built-in function symbol=? and returns the result. Why would we build a
helper function for that?

Well, with name implemented as a symbol, writing compare-names will
make little sense. If, however, names were, themselves, compound objects
where the equality test required use of selector functions, or application of
multiple equality tests, then abstracting out this function into a helper like
compare-names would make sense.

We can use or to
check all three
possibilities in a
single function
call, producing the
boolean or of the
answers.

Sometimes, you can see these coming. More often, you will discover the
need for a helper function like compare-names as you are writing the code
that needs help. You should still go ahead, create the helper function, and
use it to simplify the code. Using a helper function to replace short but
complex sequences of code that are repeated makes the resulting code easier
to read. It also centralizes the knowledge and control into the helper
function–-in the sense that a later change can be made in one place, rather
than in many places. This should, in principle, lead to software that is easier
to understand, to modify, and to maintain.

If all of the tests on a two-digit year had been isolated into a single helper
function, or even a couple (for = < & >), the Y2k problem would have been
much easier to fix.]

Another version of in-family?

;; in-family?: ftn symbol � boolean
;; Purpose: determine if the symbol is in the ftn
;; return true if found and false otherwise
(define (in-family? a-ftn kin)
 (cond
 [(symbol? a-ftn) (symbol=? a-ftn kin)]
 [(ftn? a-ftn)

 (cond
[(symbol=? (ftn-name a-ftn) kin) true]
[(in-family? (ftn-mother a-ftn) kin) true]
[(in-family? (ftn-father a-ftn) kin) truie]
[else false]
)]))

More Complex Information

This representation of family trees is quite simple. It only includes people's
names and their parent–child relationships. Let's get more realistic. First, we
can add more information, such as year of birth (for age) and eye-color.
Second, we should be able to account for families where the information
about an ancestor is unknown–-a common situation in genealogical research.

How would we revise the data definition for ftn? These two changes are
handled differently. Adding year of birth and eye-color simply adds more
fields to the structure. Making allowance for missing parents is a matter of

how we build and interpret the data structure; we can use empty to represent
the missing ancestors and disallow an unencapsulated symbol as a ftn.

;; a ftn is either
;; – empty, or
;; – (make-ftn name mother father year eyes)
;; where name is a symbol, mother and father are ftn,
;; year is a number, and eyes is a symbol
(define-struct ftn (name mother father year eyes))

;; Examples
 empty
 (make-ftn

'Mary
(make-ftn 'Ann empty empty 1950 'blue)
empty
1975
'green)

What does the template for this more complex ftn look like?

(define (f … a-ftn …)
 (cond
 [(empty? a-ftn) …]
 [(ftn? a-ftn) …

(ftn-name a-ftn) …
(f (ftn-mother a-ftn) …) …
(f (ftn-father a-ftn) …) …
(ftn-year a-ftn) …
(ftn-eyes a-ftn) …

]
))

What does the program in-family? look like on this new version of ftn?

;; in-family? : ftn symbol -> boolean
;; Purpose: returns true if symbol is in the family tree
(define (in-family? a-ftn name)
 (cond
 [(empty? a-ftn) false]
 [(ftn? a-ftn)
 (or

(symbol=? (ftn-name a-ftn) name)
(in-family? (ftn-mother a-ftn) name)
(in-family? (ftn-father a-ftn) name))

]
))

Let’s develop the program count-female-anscestors: ftn -> number. It
should return the number of female ancestors in the ftn; a person does not
count as their own ancestor.

;; count-female-ancestors: ftn -> num
;; Purpose: consumes a ftn and returns the number of female ancestors
(define (count-female-ancestors a-ftn)
 (cond
 [(empty? a-ftn) 0]
 [else
 (cond

 [(empty? (ftn-mother a-ftn)
 (count-female-ancestors (ftn-father a-ftn))]

 [else (+ 1
 (count-female-ancestors (ftn-mother a-ftn))
 (count-female-ancestors (ftn-father a-ftn)))])]

))

Is this ok? No, it violates one of the rules of COMP 210–-one discussed in
the book that I haven't hit on heavily in class.

A program should only look inside one data item. If you need to look
inside more than one data item, use a second function–-a helper
function. The code comes out cleaner; down the road, it is easier to
understand and easier to modify.

Done without a helper function
because the actual function is trivial.

This version of count-female-ancestors looks inside both a-ftn and
(ftn-mother a-ftn). Doing so leads to all that mess in the else case of the
outer cond.

Following the rule produces a somewhat simpler version of count-female
ancestors.

;; count-mother: ftn -> num
;; Pupose: determine how many ancestors to add for current mother
(define (count-mother a-ftn)
 (cond
 [(emtpy? a-ftn) 0]
 [else 1]
))

;; count-female-ancestors: ftn -> num
;; Purpose: consumes a ftn and returns the number of female ancestors
(define (count-female-ancestors a-ftn)
 (cond
 [(empty? a-ftn) 0]
 [else
 (+ 1 (count-mother (ftn-mother a-ftn)

 (count-female-ancestors (ftn-mother a-ftn))
 (count-female-ancestors (ftn-father a-ftn)))]

))

This is much cleaner.

What if we wanted to only count blue-eyed female ancestors? What must
we change? Only the helper function!

;; count-if-blue-eyes: ftn -> num
;; Purpose: returns 1 if the ftn has blue eyes, 0 otherwise
(define (count-if-blue-eyes a-ftn)
 (cond
 [(symbol=? 'blue (ftn-eyes a-ftn)) 1]
 [else 0]
))

;; count-mother: ftn -> num
;; Pupose: determine how many ancestors to add for current mother
(define (count-mother a-ftn)
 (cond
 [(emtpy? a-ftn) 0]
 [else (count-if-blue-eyes a-ftn)]
))

Is this just a matter of esthetics? To some extent, it is. This is where the art
comes into programming. The decomposition of the problem into two
functions produces a clean, crisp, understandable separation of concerns.
The program count-female-ancestors processes the item passed to it. The
program count-mother processes the item passed to it. To accomplish its
job, count-female-ancestors uses both a recursive call on itself and the call to
count-mother. Notice that count-mother is the only place where a number
other than zero gets added into the count. The decomposition rule had the
effect of separating out the search criterion from the mechanism that guides
the search. The result is a cleaner, more readable, more "elegant."

Not to Belabor the Point
Here is some more hand-evaluation on family trees. You should look
through this material. I skipped over this in lecture in the interest of moving
quickly.

To finish up with in-family? on this version of family trees, let’s apply the
program to some of our example data.

(in-family? ‘Joe ‘Keith)
⇒ (cond
 [(symbol? ‘Joe) (symbol=? ‘Joe ‘Keith)]
 [(ftn? ‘Joe)

 (or
(symbol=? (ftn-name ‘Joe) ‘Keith)
(in-family? (ftn-mother ‘Joe) ‘Keith)
(in-family? (ftn-father ‘Joe) ‘Keith)
)]))

⇒ (cond
 [true (symbol=? ‘Joe ‘Keith)]
 [(ftn? ‘Joe)

 (or
(symbol=? (ftn-name ‘Joe) ‘Keith)
(in-family? (ftn-mother ‘Joe) ‘Keith)
(in-family? (ftn-father ‘Joe) ‘Keith)

)]))

⇒ true (symbol=? ‘Joe ‘Keith)]

⇒ (symbol=? ‘Joe ‘Keith)

⇒ false

What about a more complex example?

(in-family?
(make-ftn 'Mary (make-ftn 'Ann 'Susan 'Tom) 'Joe)
‘Keith)

⇒ (cond
 [(symbol? (make-ftn 'Mary (make-ftn 'Ann 'Susan 'Tom)

 'Joe))
 (symbol=? a-ftn ‘Keith)]
 [(ftn? (make-ftn 'Mary (make-ftn 'Ann 'Susan 'Tom) 'Joe)

(or (symbol=? (ftn-name
 (make-ftn 'Mary

(make-ftn 'Ann 'Susan 'Tom)
'Joe))

 ‘Keith)
 (in-family? (ftn-mother

 (make-ftn 'Mary
 (make-ftn 'Ann 'Susan 'Tom)
 'Joe))

 ‘Keith)
 (in-family? (ftn-father

 (make-ftn 'Mary
 (make-ftn 'Ann 'Susan 'Tom)
 'Joe))

 ‘Keith))])

⇒ (cond
[false (symbol=? a-ftn ‘Keith)]
[(ftn? (make-ftn 'Mary (make-ftn 'Ann 'Susan 'Tom) 'Joe)

 (or (symbol=? ‘Mary ‘Keith)
 (in-family? (make-ftn 'Ann 'Susan 'Tom) ‘Keith)
 (in-family? 'Joe ‘Keith))])

⇒ [true (or (symbol=? ‘Mary ‘Keith)
 (in-family? (make-ftn 'Ann 'Susan 'Tom) ‘Keith)
 (in-family? 'Joe ‘Keith))]

⇒ (or (symbol=? ‘Mary ‘Keith)
 (in-family? (make-ftn 'Ann 'Susan 'Tom) ‘Keith)

 (in-family? 'Joe ‘Keith))

⇒ (or false
 (cond

 [(symbol? (make-ftn 'Ann 'Susan 'Tom))
 (symbol=? (make-ftn 'Ann 'Susan 'Tom) ‘Keith)]
 [(ftn? (make-ftn 'Ann 'Susan 'Tom))

 (or
 (symbol=? (ftn-name (make-ftn 'Ann 'Susan 'Tom))
 ‘Keith)
 (in-family? (ftn-mother (make-ftn 'Ann 'Susan

'Tom))
‘Keith)

 (in-family? (ftn-father (make-ftn 'Ann 'Susan
'Tom))

‘Keith)

)])
 (in-family? 'Joe ‘Keith)
)

⇒ (or false
 (cond

 [false (symbol=? (make-ftn 'Ann 'Susan 'Tom) ‘Keith)]
 [(ftn? (make-ftn 'Ann 'Susan 'Tom))

 (or
 (symbol=? (ftn-name (make-ftn 'Ann 'Susan 'Tom))
 ‘Keith)
 (in-family? (ftn-mother (make-ftn 'Ann 'Susan

'Tom))
‘Keith)

 (in-family? (ftn-father (make-ftn 'Ann 'Susan
'Tom))

‘Keith)

)])
 (in-family? 'Joe ‘Keith)
)

⇒ (or false
 (cond

 [true
 (or

 (symbol=? (ftn-name (make-ftn 'Ann 'Susan 'Tom))
 ‘Keith)
 (in-family? (ftn-mother (make-ftn 'Ann 'Susan

'Tom))
‘Keith)

 (in-family? (ftn-father (make-ftn 'Ann 'Susan
'Tom))

‘Keith)

)])
 (in-family? 'Joe ‘Keith)
)

⇒ (or false
 (or (symbol=? (ftn-name (make-ftn 'Ann 'Susan 'Tom))

 ‘Keith)
 (in-family? (ftn-mother (make-ftn 'Ann 'Susan 'Tom))

‘Keith)
 (in-family? (ftn-father (make-ftn 'Ann 'Susan 'Tom))

‘Keith)

)
 (in-family? 'Joe ‘Keith)
)

⇒ (or false
 (or (symbol=? 'Ann ‘Keith)
 (in-family? 'Susan ‘Keith)
 (in-family? 'Tom ‘Keith))

(in-family? 'Joe ‘Keith)
)

⇒ (or false
 (or false false false)

false)

⇒ false

These all evaluate to
false. It just takes a
while, expanding each
call to in-family? and
working it through.
We’ve done enough to
make the point; the rest
would be painful!

