
COMP 210, Fall 2000
Third Exam
Due Wednesday, December 6, 2000 at 5:00 PM

Hand the exam in at DH 2065

You will need to supply your own paper.

This exam is conducted under the Rice Honor Code. It is a closed-notes, closed-book
exam. You have three hours to take the exam. You may take one break of up to fifteen
minutes during the exam. The break does not count against your three hours. Of course,
you are not allowed to discuss the exam with other people during the break, or to consult
your notes, book, or DrScheme.

You may use a computer to type your answers to the various questions. You may not use
DrScheme during the exam [or any other Scheme interpreter or compiler].

Please

• Print your name legibly on the outside of the blue book. If you use more than one
blue book, print your name on the outside of each blue book.

• Write the pledge correctly and sign it. (No points this time.)

• Record your starting and stopping times.

The exam has four questions. The relative weights (points) are marked on each question.
If a question uses the results from an earlier question, you should assume that you have
the perfect solution to that earlier question. For example, if question one has you create a
program foo , you can assume, in question two that foo exists and that it works as
specified, even if your answer to question one is incomplete or incorrect.

You may use the usual Scheme constructs and constants in your programs.

I have tried to give you enough information to answer each question on the exam. In the
event that you need additional information, or a clarification, make a reasonable
assumption and document it. (Write down, explicitly, any assumptions that you make.)

1. Using an Accumulator (25 points)
Scheme’s abstract function foldl is best implemented using an accumulator. Given
the definition of foldl ,

;; foldl: (α β → β) β list-of-α → β
;; Purpose: given a function f, an initial value base, and a list
;; (list x0 x1 x2 … xn), foldl computes
;; (f xn … (f x2 (f x1 (f x0 base))) …)
(define (foldl f base a-list) …)

show the code that you would write to create foldl if it were not present in your
implementation of Scheme.

You may not use set! (or any of its variants, like set-structure!) in your code for this
problem. You need not show templates, test data, or any evaluation.

2. Naming and Scoping (15 points)
Write a program counter that takes no arguments and returns a number that indicates
the total number of times that counter has been called. Hide any state that counter
requires inside a local.

You need not show data analysis, templates, or test data (obviously). Be sure to
include all the comments required by the design methodology, though.

3. Putting It All Together (35 points)
As a COMP 210 alum, you have been asked to write the password subsystem for your
company’s new Scheme-based operating system. It needs the following functions:

a. create-account – consumes two symbols, name and pwd, and returns a boolean.
The symbol name is taken as a user name, and pwd is the initial password for that
user name. create-account should set up the internal data structures that allow
check-password and change-password to recognize name & pwd as valid. If
name already exists as an account, create-account should return false. If, for any
other reason, it cannot create the name, it should return false. If the account is
successfully created, it should return true.

b. check-password – consumes two symbols aname and apwd, and returns a
boolean. If it determines that, (1) aname is a valid user name created with the
program create-account, and (2) that pwd is the password registered for that user
name (either by create-account or by change-password), then check-password
returns true. If either of those conditions is not true (the user name is not
registered or the password is incorrect), then check-password returns false.

c. change-password – consumes four symbols, thename, oldpwd, newpwd1, and
newpwd2, and performs a complex operation. First, it verifies that thename is
registered with current password oldpwd. If this is not the case, it returns false.
Next, it confirms that newpwd1and newpwd2 are identical. If this is not the case,
it returns false. If the inputs pass all these checks, then change-password
modifies the internal data structures so that newpwd1 is the password associated
with the user name thename, and it should return true.

Develop these three programs, along with all the data structures that they need. Hide
the programs and their data structures inside an interface function named security.
The contract for security is a little unusual

;; security: symbol � password-service
;; Purpose: Given ‘create, it returns create-account,
;; given ‘check, it returns check-account, and
;; given ‘change, it returns change-account
(define (security a-symbol) …)

Include all of the comments required by the design methodology for all of the
programs that you write, including the ones hidden inside security. You do not need
to show examples, templates, or test data.

4. Using Vectors (25 points)

a. Write a program vector-add that consumes a vector of number and returns the
sum of all the elements in the vector.

b. Write a program that consumes two vectors of numbers, a and b, and produces a
vector of numbers, c, according to the following rules.

• a and b need not be the same length.

• c has the same length as b.

• If a is <a0 a1 a2 … an> and b is <b0 b1 b2 … bm>, then c is computed as

c0 = a0b0 + a1b0 + a2b0 + …anb0

c1 = a0b1 + a1b1 + a2b1 + …anb1

c2 = a0b2 + a1b2 + a2b2 + …anb2

…
cm = a0bm + a1bm + a2bm + …anbm

Show all the steps in the development of your programs.

Note that each row is a
separate element of c

Extra Credit (10 points)
We can approximate the logarithm of a number by iteration, as long as we are not overly
concerned with accuracy. The functional version of the code might look like this:

;; log-approx: num num � void
;; Purpose: prints an approximation of the logarithm of “start” by
;; repeatedly dividing the base into the start value
(define (log-approx start base)
 (local [(define (log-help start base count)

(cond [(<= start 1) count]
[else (log-help (/ start base) base (add1 count))]
))]

(printf “~s raised ~s times is ~s-n” base (log-help start base 0) start)
))

Feeding this program some test cases produces the following results

(log-approx 100 5) ==> 5 raised 3 times is 100
(log-approx 256 2) ==> 2 raised 8 times is 256
(log-approx 1024 2) ==> 2 raised 10 times is 1024

Write an iterative version of this program using the built-in function loop-until.

As a reminder, the contract for loop-until is

;; loop-until: α (α →boolean) (α → α) (α → β) → void

Simply show your final code.

