
COMP 210, Spring 2002, Homework 5
Due Wednesday, February 20, 2002 at the start of class

Before you start the homework, you should remind yourself of our General Advice,
Advice on Homeworks, and Grading Guidelines. All are available from the class web
site (http://www.owlnet.rice.edu/~comp210).

For this assignment, you should follow all the steps of the design methodology and
include the results of each step as comments or code in the final materials that you
submit.

1. (4 pts) In class, we discussed two data definitions for family trees (reproduced
below). Some programs are easier to write using one data organization rather than the
other. To explore this, consider what it would take to develop the following program
using each of the two definitions.

The program find-siblings consumes a list of family trees (either a ftn or a parent)
and a symbol and produces a list of symbols. The symbols in the output list are
the names of the siblings of the person named in the input symbol. You may
assume that a name appears at most once in a family.

Note: this problem uses a list of ftn or a list of parent so that it has access to
multiple entries into a single family.

a. (1 pt) Under which data definition is find-siblings easier to develop.

b. (3 pts) Develop the program for the data definition that you named in part (a.) Be
sure to show all the steps in the design methodology.

 Child-centric family trees

;; A ftn (for family tree node) is either
;; - empty, or
;; - (make-child name father mother year eyes)
;; where name and eyes are symbols,
;; father and mother are ftn, and
;; year is a number

 (define-struct child (name father mother year eyes))

Parent-centric trees

;; A parent is a structure
;; (make-parent name year eyes loc)
;; where name and eyes are symbols, year is a num,
;; and loc is a list-of-children.

(define-struct parent (name year eye-color children))

;; A list-of-children is either
;; - empty, or
;; - (cons f r)
;; where f is a parent and r is a list-of-children

