
COMP 210, Spring 2001
Lecture 23: A Case Study in How to Use Mutation

Reminders

Review
We explained how to simulate structures (including structure mutation) in
functional Scheme + set!. It involved hiding variables with a local that
returns a lambda expression.

An Example for set-structure! and set!

Consider implementing an online phone book that maps names to phone
numbers.  Such a phone book must support two features–-we must be able to
insert new entries and we need to be able to look up a name and get back the
phone number.  We can represent a phone book entry as a simple structure
that has two fields.
; An entry is a structure
;   (make-entry na nu)
; where na is a symbol and nu is a number
(define-struct entry (name number))

; phone-book : list of entry
; keep track of the current phone book entries
(define phone-book empty)

Now we need two functions
; lookup-number : symbol phone-book àà (number or false)
;   (lookup-number name) returns the phone number associated with name
;   or false if name is not found

; add-to-phone-book : symbol number àà (void)
;   (add-to-phone-book s n) returns (void)
;   Effect: adds the entry (s,n) to the phone book

Can we write down the test data for these programs?  It is somehow more
complex than the cases that we have seen in the past.  If we try

(lookup-number ‘Todd)

the answer depends on what has happened since we last clicked the execute
button in DrScheme.  If we have already executed the expression

(add-to-phone-book ‘Todd  7135551212)

then the call to lookup-number should return 7135551212.  If we have never
added ‘Todd to the phone book, then it should return false.

To write down something that has definite results, we need a sequence of
calls.  For example, we can state that the sequence



(add-to-phone-book ‘Corky  7133486042)

(lookup-number ‘Corky)

should always have the same results. The call on add-to-phone-book
returns (void), and the call to lookup-number returns 7133486042.  For
programs that have persistent internal state, we need to write more
complicated test data that ensures some knowledge of what is preserved in
that internal state and then uses that knowledge for testing.

Both of these programs are pretty straight forward:
; lookup-number : symbol àà (number or false)

;   (lookup-number s) returns the phone number for symbol s, or false
;   if s is not found
(define (lookup-number name)
  (local [(define matches

       (filter (lambda (an-entry)
            (symbol=? name (entry-name an-entry)))
          phone-book))]

     (cond [(empty? matches) false]
           [else (entry-number (first matches))])))

; add-to-phone-book : symbol number àà (void)
;   (add-to-phone-book s n) returns (void)
;   Effect: add the entry (s,n) to the phone book
  (set! phone-book (cons (make-entry name num) phone-book)))

Whenever we write a program that changes the value of a variable using
set! (or set-structure!), we must document what those changes will be.
Thus, the purpose statement we must (i) specify the value returned by the
Function and (ii) describe any effects that the program has on the program
state (the bindings of the variables defined outside the function.  The
purpose statement for add-to-phone-book above shows our recommended
format for such purpose statements.

Exercise: write a purpose statement for  the function mystery that we wrote
earlier?  Effects can be subtle and not obviously related to the value returned
by a function.

A Stylistic Digression

Leave room for
Effect comment



Did we write the best definition for lookup-number?  How does the
following alternate definition compare with our original definition?

(define (lookup-number name)
  (local [(define (lookup-number-help add-book)
            (cond [(empty? add-book) false]
                  [(symbol=? name (entry-name (first add-book)))
                   (entry-number (first matches))]))]
     (lookup-number-help phone-book))

Both of these definitions are good ones.  One is not clearly better  than the
other.   The second definition is more efficient on successful searches
because it does not scan the entire list.  The first definition is arguably easier
to understand.

Improving Our Phone Book

That happens when someone moves? How do we update the phone book?
We need a function update that takes a name and a number and changes the
phone number for that name.  How could you write this?

The classic approach, from the days when we thought primarily about
structural recursion, would be to rebuild the phone book around a new entry
for the person who moved.  This would require searching through the phone
book for the entry corresponding to name and rebuilding the list on the way
back out of the recursion.
; update-phone: symbol number àà void
;   (update-phone s n) returns (void)
;   Effect: destructively modifies the entry for s to contain
;   the number n
(define (update-phone name num)
  (local [(define updated-book

 (map (lambda (entry)
        (cond [(symbol=? (entry-name entry) name)
               (make-entry name num)]

                         [else entry]))
      phone-book))]

    (set! phone-book updated-book)))

There is, however, reason that you might not want to do it that way:
efficiency.  If your phone book approaches the size of the White Pages™ for
Houston, you might want to avoid building and rebuilding it every time
some customer moves.  How can we do this?  By exploiting the structure
mutators

set-entry-name!: entry symbol àà void

set-entry-number!: entry number àà void



that Scheme creates for every define-struct data declaration.  Using
structure mutators, how can we write update-phone?
; update-phone: symbol number àà void
;   (update-phone s n) returns (void)
;   Effect: destructively modifies the entry for s to contain
;   the number n

(define (update-phone-book! name new-num)
  (local [(define (helper! a-book)

      (cond
             [(empty? helper) void]

  [else
   (cond

[(symbol=? name (entry-name (first a-book)))
 (set-entry-phone! (first a-book) new-num)]
[else (helper! (rest a-book))])]))]

      (helper! phone-book)))

Notice that this version of update-phone does not use set! at all.  It does not
need to change the global variable phone-book, because it changed one of
the entries inside phone-book directly.  (The earlier version built a whole
new phone book to incorporate the change.)


