
COMP 210, Spring 2001
Lecture 22: Coping with mutation operators

Reminders

Review
We introduced the other mutation operators of Scheme: set! and the
various set-struct! operators and discussed how mutation operators break
our existing evaluation rules. Today, we will fix those rules.

We also introduced the begin construct which evaluates a sequence of
expressions and returns the last one.

Digression

We can use begin insert “print’’ statements in programs to help us debug
them. We can observe the arguments passed to a function (or the value of
any other expression) in this way. The name of the print operation in
Scheme is printf. It has the following contract, header, and purpose:

; printf: string any … any -> void

; (printf format-string v1 … vn) prints formatted output to the
; screen where format-string is a string that is printed;
; format-string can contain special formatting tags:
; ~n or ~% prints a newline
; ~v or ~V prints the next argument among the vs
; ~~ prints a tilde (~)
; The number of special formatting tags should equal the number n
; of values v1 … vn to be printed

More on begin and set!

The begin construct is only useful if we have expressions with effects other
than simply returning a value. In fact, we reserve the term effect to describe
a mutation to the program state. Thus, begin is useful with set! and other
mutation operators precisely because set! changes the value of some
variable and other mutators modify some data structure).

Consider the following trivial example:
(define n 5)
(begin
 (set! n (add1 n))
 n)

If we evaluate this, the define expression creates an object named n and
gives it the value five. Evaluating the begin expression first evaluates the
set!, which sets n’s value to 6, and then evaluates n, which returns 6.

What happens with this piece of code:
(define x 3)
(define y 4)
(begin
 (set! x y)
 (set! y x))

The defines create objects x and y that have the values 3 and 4,
respectively. The begin expression looks like it should swap those values.
However, that’s not what happens.

<hand evaluate the expression>

Contrary to the intuitions that we’ve developed over the past ten weeks, this
does not interchange the values of x and y. The first set! changes x’s value
by replacing it with y’s value. The second set! takes the value of x (which
is now identical to the value of y) and uses it to replace the value of y. Thus,
after executing the begin, x has the value of 4, as does (surprise!) y. The
net effect is the same as if we had never executed the second set!.

Can we write a program swap: number number àà void that takes two
numbers and swaps their values? This should take less than two minutes.

; swap: number number àà void
; interchanges the values of the arguments
(define (swap x y)
 (local [(define temp x)]
 (begin
 (set! x y)
 (set! y temp))))

This program uses a variable temp to preserve the value of x while it
overwrites x with y’s value. Then, it takes the preserved value (x’s old
value) and assigns it to y. Because the expressions inside the begin execute
in sequential order rather than concurrently (at the same time, or in parallel),
we need an extra place to hide one of the values.

But does this work? No, it does not work. If we execute it using DrScheme,
we get the following behavior:

(define a 5)
(define b 6)
(swap a b)
a
> 5

b
> 6

Why? Remember our rewriting rules. When we rewrite (swap a b), what
happens? The rewriting engine replaces any occurrences of a and b in the
body of swap with their respective values. Does this mean that the set!
expressions inside the body actually change the values of the constants? Of
course not. What variables does swap modify? x and y.

Are these variables synonyms for a and b? No. They are local to the body of
swap.

Evaluating set!

We can easily extend our evaluation rules to handle the set! construct. Let
x be a variable name and v and newv be values. If the form
 (set! x newv)

is the leftmost reducible form then
…

(define x v)

…

(set! x newv)

…

=>

…

(define x newv)

…

(void)

…

Note: (void) is a value that the DrScheme interactions window does not
print when it appears at top-level (not embedded inside another value).

Devising evaluation rules to handle data mutation operations like vector-
set! is more difficult. To gain insight, let’s see if we can simulate mutable
structures in the Scheme dialect for which we have evaluation rules.

Understanding set-structure!

Assume that Scheme has no structures. Can we implement them using the
other constructs of Scheme? Consider the following implementation of
pairs.

; (define-struct Pair (left right))

(define (make-Pair x y)

 (local [(define left x)

 (define right y)]

 (lambda (msg)

 (cond [(symbol=? msg 'left) left]

 [(symbol=? msg 'right) right]

 [(symbol=? msg 'set-left)

 (lambda (val) (set! left val))]

 [(symbol=? msg 'set-right)

 (lambda (val) (set! right val))]

 [else (error 'Pair "illegal operation")]))))

(define (Pair-left p) (p 'left))

(define (Pair-right p) (p 'right))

(define (set-Pair-left! p v) ((p 'set-left) v))

(define (set-Pair-right! p v) ((p 'set-right) v))

We can represent structures as procedures that take symbols (messages) as
arguments specifying what operation to perform. Such procedural
representations are often called “object-oriented” representations because
they are similar to the “objects” of object-oriented programming. Note that
this representation correctly handles the sharing relationships between
variables bound to structures.

Question: what happens when a variable q is defined as the value of a
variable p bound to a simulated structure.

Evaluation Rules for Scheme with Data Mutation

To represent mutable structures, we need values that handle sharing like
lambda does. Copying a lambda form does not change the variables that it
mentions; hence all copies are indistinguishable. In contrast, copying a
(make-struct …) expression creates a distinct structure. Hence we cannot
copy (make-struct …) expressions. We can avoid such copying by
introducing a new form of value called a location.

In our revised evaluation system, (make-struct …) expressions evaluate
to locations which are special variables that are values. Each location
variable is bound to the corresponding (make-struct …) expression in a
(define …) form. To distinguish location variables from other variables,
we will include the character ”$” in the name of each location variable and

exclude this character from ordinary variable names. A set-structure!
operation takes a location as it first argument and modifies the specified
field of the structure corresponding to that location.

Let’s work an example.
 (define-struct Pair (left right))
 (define p (make-Pair 3 4))

 (define q p)

 (set-Pair-left! p 5)

 (Pair-left q)

= (define-struct Pair …)

(define Pair$1 (make-Pair 3 4))

(define p Pair$1)

(define q p)

(set-Pair-left! p 5)

(Pair-left q)

= (define-struct Pair …)

(define Pair$1 (make-Pair 3 4))

(define p Pair$1)

(define q Pair$1)

(set-Pair-left! p 5)

(Pair-left q)

è (define-struct Pair …)

(define Pair$1 (make-Pair 3 4))

(define p Pair$1)

(define q Pair$1)

(set-Pair-left! Pair$1 5)

(Pair-left q)

= (define-struct Pair …)

(define Pair$1 (make-Pair 5 4))

(define p Pair$1)

(define q Pair$1)

(void)

(Pair-left q)

= (define-struct Pair …)

(define Pair$1 (make-Pair 5 4))

(define p Pair$1)

(define q Pair$1)

(void)

(Pair-left Pair$1)

= (define-struct Pair …)

(define Pair$1 (make-Pair 5 4))

(define p Pair$1)

(define q Pair$1)

(void)

5

