COMP 210, Spring 2001
Lecture 21: Vectorsand Mutable State

Reminders:

1. Big programming assignment, Missionaries and Cannibals, due April 6 (a
week from next Wednesday) in class.

Vectors

The International Tennis Federation (ITF) provides rankings of the top 100
tennis players. For each player, the organization stores his or her name,
home country, and number of matches won. Since people frequently ask for
statistics on players according to their rank, the organization wants a
program through which they can find the information for a player with a
given ranking. The head of information technology for the ITF was talking
with the head of JetSet Airlines. She got a strong recommendation to hire
the COMP 210 program to develop this software.

Let’s develop a data definition and lookup program for this problem.

; A player is a structure

(make- pl ayer name hone w ns)
; where nane and hone are synbols and wins is a nunber
(define-struct player (name home wi ns))

; Aranking is a (list of player) containing 100 el enents
with the players in ascending rank order

; find-by-rank : ranking nunber[<=100] —-> pl ayer

Purpose: returns the player with the given rank, starting from
; rank 1
(define (find-by-rank a-ranking player-nun

(local [(define (hel per alop at-num

(cond [(= at-num player-num (first alop)]
[el se (helper (rest alop) (addl at-num)]))]
(hel per a-ranking 1)))

We could also have written

(define (find-by-rank a-ranking player-nun
(cond
[(= player-num 1) (first a-ranking)]
[el se (find-by-rank (rest a-ranking) (subl player-num)]))

This function is similar to one built-in to Scheme called | i st - ref , which
consumesa(list-of T) loi andanumber n and returns the nth element in

| oi , counting from 0. We could therefore have written fi nd- by-rank using
list-ref asfollows:

(define (find-by-rank a-ranking player-nun
(list-ref a-ranking (subl player-num))

How long does it take to find a player by her rank? It depends on the rank.
Finding the top ranked player requires one call to helper; finding the 100th
ranked player requires 100 callsto helper. On average, find-by-rank 1ooks at
50 % playersto return an answer (assuming that the input requests are
uniformly distributed over the numbers from 1 to 100). If ITF expanded its
ranking table to include the top 1000 players, we would inspect at 500 %2
players on average to return an answer. We should be able to find the
specified player in constant time independent of the number of players
included in the ranking.

One big hint should come from the fact that we have afixed set of players.
This problem cries out for a structure rather than alist, since we know in
advance the number of dataitems that will be managed. Let’s redefine the
r anki ng data type:
; aranking is a structure

(make-ranking pl p2 p3 ...pl00)
; where the p; are players
(define-struct ranking pl p2 p3 ...pl00)

Now, how do we writefi nd- by-r ank?

; find-by-rank : ranking nunber[<=100] -> player
; returns the player with the given rank, starting fromrank 1
(define (find-by-rank a-ranking player-nun
(cond [(= player-num 1) pl]
[(= player-num 2) p2]
[(= player-num 3) p3]
[(= player-num 100) p100]))

This program is on the right track. We can directly select a player with a
given ranking, but we have no mechanism for mapping a number to the
corresponding selector function without performing a sequence of tests. The
program above eval uates 50 %2 comparisons on average to select a specified

player.
Finger exercise: can we map numbers to selectors more efficiently than we

did in the code above which runsin time O(N) where N is the number of
selectors.

What we need is a structure where the selector names are numbers. A
Schemevect or isprecisely such astructure. A vector consists of a fixed
number of fields indexed by consecutive natural numbers starting with O
(just likethel i st - ref function accesseslists). Hence the fields of a vector
of 100 elements are indexed by the natural numbersO, 1, ..., 99. Asina
structure, the cost of accessing any element of a vector isthe same,

independent of which element we access.

Essentially every programming language includes this form of data
structure; in Fortran, Algol, Pascal, C, C++, Java, this form of data structure
iscalled an array.

Scheme provides several different primitive operations for constructing
vectors. For example, we could define a vector containing the names of the
core courses in the Computer Science mgor:

(define core-courses
(vector "~ Conmp210 " Conp212 " Conp 280 ‘ Conp320 ‘ Conp314))

Given this vector, we can perform several operations on it:

1. Find out how many components it contains:

Just like list-ref, except it
tor-1ength - =5 ’
(_Vec or-iengih eor2 Se?) doesn’'t have to walk the
2. Retrieve the kth onent (counting from 0) entire vector. (Efficiency)
(vector-ref core-courses 2) = ' Conp280

3. Build avector of length n containing the elements
(f 0),(f 1),....,(f (- n1l))
generated by a function f

(build-vector n f)

For example,
(buil d-vector 5 square) =
(vector 0 1 4 9 16)

Sincevect or - ref Uses the same amount of work to access every element,
regardless of its position in the vector, a vector is the ideal data structure for
our program f i nd- by- r ank. In general, it makes sense to use vectors
when:

1. the number of componentsiis fixed,
2. uniform access to components is important, and
3. numbers are a convenient mechanism for indexing the components.

Thus, vectors are good for problems involving rankings of fixed numbers of
elements, such as our tennis organization problem. However, they are bad
for problems such as address books, because the numbers are not a natural
way to index the entries.

Let's redesign our rankings program using vectors. The data definition for
players stays the same.

;7 Aranking is a vector of 100 pl ayers

;; find-by-rank : ranking number[<=100] -> player
;; returns the player with the given rank, starting fromrank 1
(define (find-by-rank a-ranking player-nun

tor-ref a- ki bl pl -
(vector-ref a-ranking (su Pl ayer num)) Index startsat 0!

How should we create a ranking? We could use a huge invocation of the
vect or operation

(vector (nmake-player "~Sanpras " Florida 3)
)

but thisis clumsy and error prone. How do we check that the correct player
islisted in 49" postion? In addition, we need a mechanism for updating a
ranking as the season unfolds. What can we do to initialize the vector more
simply and update it when new information come is?

Mutate (destructively modify) the ranking vector!
Scheme includes two more operations on vectors:
1. The operation

(make-vector N)
constructs a vector containing N elements. Each element of the
constructed vector isinitialized to O.
2. The operation
(vector-set! V n val)
sets (modifies!) the n" element of Vtoval . For example, given the
vector cor e- cour ses defined above,
(vector-set! core-courses 4 " Conp312)

changes the value of cor e- cour ses from
(vector "~ Conp210 "Conp212 " Conp 280 ‘ Conp320 ‘ Conp314)

to
(vector "~ Conp210 "Conp212 " Conp 280 ‘ Conp320 ‘ Conp312)

Mutating a vector destructively changes the contents of the vector object; the
old value of the updated element is removed.

Given these operations, we can construct aranking as follows:

; make-ranking : nunber -> vector
; Purpose: creates a vector with all conponents
; initialized to fal se
(define (make-ranking size)

(make-vect or size))

; rank-player! : ranking nunber player - void
; fills the rank specified by the nunber argument with
; the pl ayer argunent
; effect : changes value of ranking in position rank to player
(define (rank-player! a-ranking rank a-player)

(vector-set! a-ranking rank a-player))

When a Scheme operation destructively modifies a data object, we must
document this change using an ef f ect comment.

Other Mutation Operators

Thevect or-set! operation isnot unique. Scheme includes operators for modifying
the values of fields of structures and for modifying the values of variables. For each field
of astructure, thereis afield update operator. For example, given the structure definition

(define-struct Pair (left right))

Scheme creates update operatorsset - Pai r-1eft! andset-Pair-right! That
modify the contents of aPai r structure. These operators behave just likevect or -
set!. For example,

(define p (make-Pair 1 2))
(set-Pair-left! p 2)
p

evauates to

(make-Pair 2 2)

Theset! operator isdifferent. Thefirst argument to set ! must be avariable name; it
cannot be an expression because variable names are not values. The set ! operator does
not evaluate its first argument. Hence, set ! isnot a Scheme function; it is a special
formlikedef i ne andcond. Consider the following simple example:

(define x 1)

(set! x 7)
X

evaluates to

7

A More Interesting Example

(define p (make-Pair 1 2))
(define q p)
(set-Pair-left! p 2)

q
evaluates to

(make-Pair 2 2)

A Brief Warning

We have avoided mutation operations likevect or - set! andset! up to this
point in the course precisely because it makes reasoning about the behavior
of programs much more difficult. Mutation operations lets us write
programs (and expressions) whose results depend on things that happened
earlier in the computation. (Perhaps, earlier in another computation...) This
makes the simple rewriting rules for Scheme that we have used so far in the
course somewhat more complex. It doesn’t completely change the way that
things work, but it does require that we keep track of much more context—a
subtle and difficult task, at best.

Let’s show how our existing evaluation rules break! ...

To reason about what a program does, in aworld that includes mutation
operators, we need to keep track of what happens any time a mutation occurs
during execution. In addition, we must keep track of sharing relationships
among data structures that may be mutated. Thisisalot more complex than
just copying over the arguments, textually, as we make successive calls.
Y ou can write a program that goes deep into some recursion, does a
mutation operation, and returns. If that mutation operation changed the
value of avariable that is used elsewhere in the computation, you might not
recognize it, or, even, be aware of it.
Consider the following simple program:
nmystery: nunber -> nunber
perforns some inscrutable conmputation
(define mystery
(1 ocal
[(define nmenory 1)]
(I anbda (x)
(begin
(set! nmenory (addl nenory))
(* menmory x 3/4)))))

Note: the expression

(begin ML ... V)
abbreviates

((lambda (x1 ...xn) xn) ML ... M)

What does the nmyst ery program do? It ishard to derive its operation by
calling it with afew trial arguments!

(nystery 1) = 3/4
(nystery 2) = 3
(nystery 3) = 2714

(nystery 100) 300

(nystery 100) 375 ...andsoon, ...

Thus, you should only usevect or - set! and other mutation operationsin
carefully chosen and carefully planned ways. The next several lectures will
address some of those issues. Remember, the! isawarning—to both the
programmer and the reader.

