
COMP 210, Spring 2001
Lecture 21: Vectors and Mutable State

Reminders:

1. Big programming assignment, Missionaries and Cannibals, due April 6 (a
week from next Wednesday) in class.

Vectors
The International Tennis Federation (ITF) provides rankings of the top 100
tennis players.  For each player, the organization stores his or her name,
home country, and number of matches won.  Since people frequently ask for
statistics on players according to their rank, the organization wants a
program through which they can find the information for a player with a
given ranking.  The head of information technology for the ITF was talking
with the head of JetSet Airlines.  She got a strong recommendation to hire
the COMP 210 program to develop this software.

Let’s develop a data definition and lookup program for this problem.
; A player is a structure
;   (make-player name home wins)
; where name and home are symbols and wins is a number
(define-struct player (name home wins))

; A ranking is a (list of player) containing 100 elements
;    with the players in ascending rank order

; find-by-rank : ranking number[<=100] àà player
; Purpose: returns the player with the given rank, starting from
;   rank 1
(define (find-by-rank a-ranking player-num)
  (local [(define (helper alop at-num)

    (cond [(= at-num player-num) (first alop)]
  [else (helper (rest alop) (add1 at-num))]))]

    (helper a-ranking 1)))

We could also have written
(define (find-by-rank a-ranking player-num)
  (cond
    [(= player-num 1) (first a-ranking)]
    [else (find-by-rank (rest a-ranking) (sub1 player-num))]))

This function is similar to one built-in to Scheme called list-ref, which
consumes a (list-of T) loi and a number n and returns the nth element in
loi, counting from 0.  We could therefore have written find-by-rank using
list-ref as follows:
(define (find-by-rank a-ranking player-num)
  (list-ref a-ranking (sub1 player-num)))



How long does it take to find a player by her rank?  It depends on the rank.
Finding the top ranked player requires one call to helper; finding the 100th
ranked player requires 100 calls to helper.  On average, find-by-rank looks at
50 ½  players to return an answer (assuming that the input requests are
uniformly distributed over the numbers from 1 to 100).  If ITF expanded its
ranking table to include the top 1000 players, we would inspect at 500 ½
players on average to return an answer. We should be able to find the
specified player in constant time independent of the number of players
included in the ranking.

One big hint should come from the fact that we have a fixed set of players.
This problem cries out for a structure rather than a list, since we know in
advance the number of data items that will be managed.  Let’s redefine the
ranking data type:
; a ranking is a structure
;   (make-ranking  p1 p2 p3 … p100)
; where the pi are players
(define-struct ranking p1 p2 p3 … p100)

Now, how do we write find-by-rank?
; find-by-rank : ranking  number[<=100] àà player
;   returns the player with the given rank, starting from rank 1
(define (find-by-rank a-ranking player-num)
  (cond [(= player-num 1) p1]

 [(= player-num 2) p2]
 [(= player-num 3) p3]
 …
 [(= player-num 100) p100]))

This program is on the right track.  We can directly select a player with a
given ranking, but we have no mechanism for mapping a number to the
corresponding selector function without performing a sequence of tests.  The
program above evaluates 50 ½ comparisons on average to select a specified
player.

Finger exercise: can we map numbers to selectors more efficiently than we
did in the code above which runs in time O(N) where N is the number of
selectors.

What we need is a structure where the selector names are numbers.  A
Scheme vector is precisely such a structure.  A vector consists of a fixed
number of fields indexed by consecutive natural numbers starting with 0
(just like the list-ref function accesses lists).  Hence the fields of a vector
of 100 elements are indexed by the natural numbers 0, 1, …, 99. As in a
structure, the cost of accessing any element of a vector is the same,



independent of which element we access.

Essentially every programming language includes this form of data
structure; in Fortran, Algol, Pascal, C, C++, Java, this form of data structure
is called an array.

Scheme provides several different primitive operations for constructing
vectors.  For example, we could define a vector containing the names of the
core courses in the Computer Science major:
(define core-courses

  (vector `Comp210 `Comp212 `Comp 280 ‘Comp320 ‘Comp314))

Given this vector, we can perform several operations on it:

1. Find out how many components it contains:
(vector-length core-courses) = 5

2. Retrieve the kth component (counting from 0)
(vector-ref core-courses 2) = ‘Comp280

3. Build a vector of length n containing the elements
(f 0), (f 1), …, (f (- n 1))
generated by a function f

 (build-vector n f)

  For example,
           (build-vector 5 square) =
           (vector 0 1 4 9 16)

Since vector-ref uses the same amount of work to access every element,
regardless of its position in the vector, a vector is the ideal data structure for
our program find-by-rank.  In general, it makes sense to use vectors
when:

1. the number of components is fixed,
2. uniform access to components is important, and
3. numbers are a convenient mechanism for indexing the components.

Thus, vectors are good for problems involving rankings of fixed numbers of
elements, such as our tennis organization problem. However, they are bad
for problems such as address books, because the numbers are not a natural
way to index the entries.

Let's redesign our rankings program using vectors.  The data definition for
players stays the same.

Just like list-ref, except it
doesn’t have to walk the
entire vector.  (Efficiency)



;; A ranking is a vector of 100 players

;; find-by-rank : ranking number[<=100] àà player
;; returns the player with the given rank, starting from rank 1
(define (find-by-rank a-ranking player-num)
    (vector-ref a-ranking (sub1 player-num)))

How should we create a ranking?  We could use a huge invocation of the
vector operation
  (vector (make-player `Sampras `Florida 3)
  . . . )

but this is clumsy and error prone.  How do we check that the correct player
is listed in 49th postion?  In addition, we need a mechanism for updating a
ranking as the season unfolds.  What can we do to initialize the vector more
simply and update it when new information come is?

Mutate (destructively modify) the ranking vector!

Scheme includes two more operations on vectors:

1. The operation
(make-vector N)

constructs a vector containing N elements.  Each element of the
constructed vector is initialized to 0.

2. The operation
(vector-set! V n val)

sets (modifies!) the nth element of V to val.  For example, given the
vector core-courses defined above,
(vector-set! core-courses 4 `Comp312)

changes the value of core-courses from
(vector `Comp210 `Comp212 `Comp 280 ‘Comp320 ‘Comp314)

 to
(vector `Comp210 `Comp212 `Comp 280 ‘Comp320 ‘Comp312)

Mutating a vector destructively changes the contents of the vector object; the
old value of the updated element is removed.

Given these operations, we can construct a ranking as follows:
; make-ranking : number àà vector
; Purpose:  creates a vector with all components
;                 initialized to false
(define (make-ranking size)
   (make-vector size))

Index starts at 0 !



; rank-player! : ranking number player àà void
;   fills the rank specified by the number argument with
;   the player argument
; effect : changes value of ranking in position rank to player
(define (rank-player! a-ranking rank a-player)
   (vector-set! a-ranking rank a-player))

When a Scheme operation destructively modifies a data object, we must
document this change using an effect comment.

Other Mutation Operators

The vector-set! operation is not unique.  Scheme includes operators for modifying
the values of fields of structures and for modifying the values of variables.  For each field
of a structure, there is a field update operator.  For example, given the structure definition

(define-struct Pair (left right))

Scheme creates update operators set-Pair-left! and set-Pair-right! That
modify the contents of a Pair structure.  These operators behave just like vector-
set!.  For example,

(define p (make-Pair 1 2))
(set-Pair-left! p 2)
p

evaluates to

(make-Pair 2 2)

The set! operator is different.   The first argument to set! must be a variable name; it
cannot be an expression because variable names are not values. The set! operator does
not evaluate its first argument.  Hence, set! is not a Scheme function; it is a special
form like define and cond.  Consider the following simple example:

(define x 1)
(set! x 7)
x

evaluates to

7

A More Interesting Example

(define p (make-Pair 1 2))
(define q p)
(set-Pair-left! p 2)



q

evaluates to

(make-Pair 2 2)

A Brief Warning

We have avoided mutation operations like vector-set! and set! up to this
point in the course precisely because it makes reasoning about the behavior
of programs much more difficult.  Mutation operations lets us write
programs (and expressions) whose results depend on things that happened
earlier in the computation.  (Perhaps, earlier in another computation…) This
makes the simple rewriting rules for Scheme that we have used so far in the
course somewhat more complex.  It doesn’t completely change the way that
things work, but it does require that we keep track of much more context–-a
subtle and difficult task, at best.

Let’s show how our existing evaluation rules break! …

To reason about what a program does, in a world that includes mutation
operators, we need to keep track of what happens any time a mutation occurs
during execution.  In addition, we must keep track of sharing relationships
among data structures that may be mutated.  This is a lot more complex than
just copying over the arguments, textually, as we make successive calls.
You can write a program that goes deep into some recursion, does a
mutation operation, and returns.  If that mutation operation changed the
value of a variable that is used elsewhere in the computation, you might not
recognize it, or, even, be aware of it.

Consider the following simple program:
; mystery: number -> number

;   performs some inscrutable computation

(define mystery

  (local

      [(define memory 1)]

    (lambda (x)

      (begin

        (set! memory (add1 memory))

        (* memory x  3/4)))))



Note:  the expression

(begin M1 … Mn)

abbreviates

((lambda (x1 … xn) xn) M1 … Mn)

What does the mystery program do?  It is hard to derive its operation by
calling it with a few trial arguments!

(mystery 1)   =  3/4

(mystery 2)   =  3

(mystery 3)   =  27/4

(mystery 100) =  300

(mystery 100) =  375   … and so on, …

Thus, you should only use vector-set! and other mutation operations in
carefully chosen and carefully planned ways.  The next several lectures will
address some of those issues.  Remember, the ! is a warning–to both the
programmer and the reader.


