
COMP 210, Spring 2001
Lecture 16: More on Functional Abstraction

Reminders:
1. Next exam will be Wednesday evening, March 21 from 7-9 P.M.
2. Current homework is due Wednesday, March 14.
3. Current reading: Intermezzo 3, Sections 19-23, Intermezzo 4.

Review

1. We started to talk about functional abstraction. We built a series of
similar programs and showed how they could be expressed as
instantiations of a common abstraction:
keep-rel: (num num -> num) num alon -> alon.

;; keep-rel (num num -> bool) num list-of-nums -> list-of-nums
;; Purpose: given binary relation rel, number n, and (list-of num)
;; alon, keep all the numbers i in the input list such
;; that i rel n
(define (keep-rel rel n alon)
 (local [(define filter-rel alon)
 ;; treat rel & n as invariant

 (cond [(cons? alon)
 (cond

 [(rel (first alon) n)
 (cons (first alon) (filter-rel alon)))

 [else (filter-rel (rest alon))])]))]

(define (keep-gt-9 alon)
 (keep-rel > 9 alon))

We talked about the fact that functions are values. All of the Scheme
“operations” you’ve seen so far, with the exception of define, define-
struct, local, and, and or is a function.

Back to Work
So far, all of these examples have looked at an open-ended interval, e.g.,
 (5,∞), (∞,9). [Of course, we could use filter-rel to find all of the
numbers equal to some number, but that's only interesting if we wanted to
count them. (length (keep-rel = 5 somelist)).] What if we wanted
to pull out the numbers between 5 and 9?

;; keep-bet-5-9: list-of-numbers -> list-of-numbers
;; Purpose: returns a list containing those numbers i in the input list
;; alon such that 5 <= i <= 9.
(define (keep-bet-5-9 alon)
 (cond [(empty? alon) empty]
 [(cons? alon)

 (cond
 [(and (>= (first alon) 5) (<= (first alon) 9))
 (cons (first alon) (keep-bet-5-9 (rest alon)))]
 [else (keep-bet-5-9 (rest alon))])]))

We should really write a helper function to replace the complex test.

;; bet-5-9?: number -> boolean
;; Purpose: test if the argument is between five and nine, inclusive
(define (bet-5-9? anum)
 (and (>= num 5) (<= num 9)))

;; keep-bet-5-9: (list-of num) -> (list-of num)
;; Purpose: returns a list containing those numbers in the input list
;; whose value is between 5 and 9, inclusive
(define (keep-bet-5-9 alon)
 (cond [(empty? alon) empty]
 [(cons? alon)

 (cond
 [(bet-5-9? (first alon))
 (cons (first alon) (keep-bet-5-9 (rest alon)))]
 [else (keep-bet-5-9 (rest alon))])]))

You know, by now, where we are going. What if we want to change the
range of numbers? We can change the helper function, but we might be
using it somewhere else.
We can write a version that takes an arbitrary range of numbers…

;; bet? : num num num -> boolean
;; Purpose: determines if the third argument lies numerically between
;; the first and second arguments
(define (bet? lower upper anum)
 (and (>= num lower) (<= num upper)))

;; keep-bet : num num list-of-numbers -> list-of-numbers
;; Purpose: keeps all the numbers between first and second arguments
(define (keep-bet lower upper alon)
 (local
 [(define (filter-bet alon)

 (cond [(empty? alon) empty]
 [(cons? alon)
 (cond [(bet? lower upper (first alon))

 (cons (first alon) (filter-bet (rest alon)))]
 [else (filter-bet (rest alon))])]))]

 (filter alon)))

(define (keep-bet-5-9 alon) (keep-bet 5 9 alon))

Notice that we used a local to avoid passing around lower and upper at the
recursive calls inside filter-bet and keep-bet.

Abstracting from keep-rel and keep-bet

Look at the definitions of keep-rel and keep-bet. They are very similar.
They differ in their parameters and the first case in the innermost cond–
where they decide whether or not to keep the first element of the input list.
The parameter differences boil down to inputs to that test. The cond clause
differs in the implementation of that test.

Can we write one program to capture all of that common code? We start by
copying down all of the information that is common to both programs,
leaving an ellipsis in places where they differ…

(define (keep … alon)
 (local
 [(define (filter alon)

 (cond
 [(empty? alon) empty)]
 [(cons? alon)
 (cond

 [(… (first alon))
 (cons (first alon) (filter (rest alon)))]

 [else (filter (rest alon))])]))]
 (filter alon)))

Let's fill in the gaps. First, look at the gap inside filter. We need an
operation that takes (first alon) and returns a boolean that tells filter
whether or not to keep a list element. Let's simply make that operation a
parameter of keep.
(define (keep keep-elt? alon)
 (local
 [(define (filter alon)

 (cond [(empty? alon) empty)]
 [(cons? alon)
 (cond

 [(keep-elt? (first alon))
 (cons (first alon) (filter (rest alon)))]

 [else (filter (rest alon))])]))]
 (filter alon)))

To use this generalization of our various keep functions, we just need to
write the appropriate helper functions. For example

(define (keep-lt-5 alon)
 (local [(define (lt-5? num) (< num 5))]

(keep lt-5? alon)))

(define (keep-bet-5-9 alon)
 (local [(define (bet-5-9? num) (bet? 5 9 num))]
 (keep bet-5-9? alon)))

The function keep is so useful that Scheme provides a built-in version of it.
We call the built-in version of it filter. Note that filter does not care
what type elements appear in the list. The only restriction on the elements of
the input list is imposed by the function parameter! For any type T, filter
maps a list of T and a function of type (T -> boolean) to a list of T.

filter: <T> (list-of T) (T -> boolean) -> list-of-T

What if you wanted to write a function that counted the number of times the
symbol 'fee appeared in a list? You'd like to write it as

;; keep-fee: (list-of sym) -> (list-of sym)
;; Purpose: return the list containing every occurrence of 'fee
(define (keep-fee alos)
 (local [(define (is-fee? asym)(= 'fee asym))]
 (keep is-fee? alos)))

Lambda
If we’re going to use abstract functions, such as filter, we’re going to end
up creating a large number of helper functions. Many of these functions will
have only one purpose–-they will be created to pass into an abstract
function. In this case, there is little (or no) point in forcing you to invent
clever (or unique) names for all of them. Scheme gives us two mechanisms
to avoid naming problems with these helper functions.

We could, of course, encapsulate them inside a local, as we did with keep-
fee.

;; keep-fee : list-of-symbol -> list-of-symbol
;; Purpose: return the list containing every occurrence of 'fee
(define (keep-fee alos)
 (local [(define (is-fee? asym)(symbol=? 'fee asym))]
 (keep is-fee? alos)))

This hides is-fee? from the world outside keep-fee and avoids the
potential for a name conflict. However, there are two problems with writing
keep-fee this way.

1. It forces you to invent a name for double, a significant hassle in large
programs because they contain so many names.

2. It is wordy.

To handle this situation, Scheme includes a construct called λ.
Unfortunately, DrScheme operates under the limited typographic
conventions of computer keyboards, so we end up writing it out as lambda.
lambda lets us create unnamed functions –- it is a second way to define a
function (instead of using define).

(define (is-fee? asym) (lambda (asym)
 (symbol=? asym ‘fee)) (symbol=? asym ‘fee))

These are equivalent, in the sense that they both create programs that "do"
the same thing. They differ, in the sense that you can use is-fee? anywhere
that its name can be seen, while the lambda expression occurs somewhere in
the code, is created, is evaluated, and cannot be used elsewhere because it
has no name.

Using lambda, we could rewrite keep-fee as

(define (keep-fee alos)
 (filter (lambda (asym) (symbol=? asym ‘fee)) alos))

In Scheme, a lambda expression is written

(lambda (arg1 arg2 … argn)
 body)

where arg1, arg2, …, argn and body are arbitrary Scheme expressions.

lambda-expressions are values so they evaluate to themselves—just like
numbers and symbols.

To evaluate the application of a lambda expression, DrScheme evaluates the
argument expressions and replaces the application by the body of the
lambda expression with the argument values safely substituted (no capture)
for the corresponding parameters.

There is an alternate way to interpret lambda expressions. The lambda
expression

(lambda (arg1 arg2 … argn) body)

can be expanded into

(local [(define (a-unique-new-name arg1 arg2 … argn)
 body)]

a-unique-new-name)

The body-expression cannot refer to a-unique-new-name because the
programmer does not know how to write it. The unique name is introduced
by the rewriting process, not by the programmer, so the programmer cannot
write a lambda expression that directly calls itself.

These two reduction strategies for handling lambda are equivalent. The first
is conceptually simpler but the second may be more notationally convenient
when evaluating programs by hand.

