
COMP 210, Spring 2001
Lecture 14: Hammering Home “Local”

Reminders:
1. Homework due Friday Wednesday
2. Exam in DH 1055 (McMurtry Auditorium) in class on Friday.

Review

1. We introduced a new Scheme construct, local, that creates a new name
space.  We worked an example, and talked about how local works.

Local
Local takes two complicated arguments

(local [ <defines> ]  <expression> )

where <defines> is a set of one or more definitions, and <expression> is
a Scheme expression that will be evaluated.  Local creates a new name
space, or scope. It evaluates the definitions within the new scope and then it
evaluates the expression in the new scope.  Once the expression has been
evaluated, its value becomes the value of the local.

Here's another example of the use of local:
; exp5: number -> number

; Purpose: given x, computes x^5

; (define (exp-5 x) …)

; Examples

; (exp-5 0) = 0

; (exp-5 2) = 32

(define (exp-5 x)
    (local [(define (square y) (* y y))]
  (* x (square (square x)))))

If we enter this program in DrScheme at the Beginner language level and
evaluate (exp-5 2), what happens?   DrScheme complains bitterly.   We
must move to the Intermediate language level .

If we change the language level to Intermediate, execute the program, and
evaluate (exp-5 2), DrScheme prints the result 32.

If we try to evaluate (square 2), what happens?



DrScheme gives us an error.   Why?  Because square exists only inside
the new scope created by the local. When it is evaluating the body of exp-
5, it creates that name space, defines square and uses it.  When it finishes
evaluating the local, that scope goes away and the definitions introduced in
that scope no longer exist.

In our formal evaluation rules, we capture the concept of local scope by
renaming all of the identifiers introduced in a local when the local is
evaluated.

Let’s trace the execution of (exp-5 2):
    (define (exp-5 x) …)

    (exp-5 2)

⇒ (define (exp-5 x) …)

(local [(define (square y) (* y y))]
      (* 2 (square (square 2))))

⇒ (define (exp-5 x) …)

(define (square’ y) (* y y))

(* 2 (square’ (square’ 2)))

⇒ (define (exp-5 x) …)

(define (square’ y) (* y y))

(* 2 (square’ (* 2 2)))

⇒ (define (exp-5 x) …)

(define (square’ y) (* y y))

(* 2 (square’ 4))

⇒ (define (exp-5 x) …)

(define (square’ y) (* y y))

(* 2 (* 4 4))

⇒ (define (exp-5 x) …)

(define (square’ y) (* y y))

(* 2 16)

⇒ (define (exp-5 x) …)

(define (square’ y) (* y y))

32

Once all of the references to renamed identifiers are evaluated, the local
definitions are inaccessible because no program text in the remainder of the
evaluation can mention those names.  At this point, the local definitions can



be dropped from the prelude of define statements preceding the expression
being evaluated.

Digression: how does DrScheme actually manage the pool of program
definitions?

1. You don’t really want to know the whole truth (all the gory details).

2. In effect, DrScheme keeps all of the definitions in a list ordered from
newest to oldest.   This list is called the environment.  When DrScheme
evaluates a local embedded in some larger expression, it appends the
list of new definitions to the front of the environment.  Once the
evaluation of the local is complete, DrScheme resumes evaluation the
larger expression using the former environment

3. The rewriting semantics used in our hand evaluations is the governing
definition of how Scheme works.  The environment method used by
DrScheme is justified by the fact that it produces the same results as the
rewriting semantics.

When should you use a local?
The real justifications for using a local are:

1. To avoid computing some complicated value more than once.

2. To make complicated expressions more readable by introducing
helper functions that break the expression up into more tractable parts.

As another example of ways that you can use local, notice that we can use
it to hide an unchanging (or invariant) parameter.  For example, in the
homework due today, you undoubtedly had occasion to develop a function
similar to
;; is_in?: symbol list-of-symbol àà boolean
;; Purpose: return true if the argument symbol is in the list,
;; otherwise, return false
(define (is_in? asym alos)
  (cond [(empty? alos) false]
        [(cons? alos)
         (or (symbol=? (first alos) asym)
             (is_in? asym (rest alos)))]))

This function passes asym at each recursive call, even though it never
changes.  We can avoid this (for aesthetic reasons, for efficiency reasons, or
simply to avoid typing asym that many times in the hand evaluations) by
using local.
;; is-in?: list-of-symbol symbol àà boolean



;; Purpose: return true if the argument symbol is in the list,
;; otherwise, return false
(define (is-in? asym alos)
  (local [(define (is-in-help los)
            (cond [(empty? los) false]
                  [else (or (symbol=? (first los) asym)
                      (is-in-help (rest los)))]))]
    (is-in-help alos)))

Here, the code avoids passing asym around to all the recursive invocations of
is-in-help.  By defining is-in-help in a context where asym is already
defined and visible, we can use it without passing it around.  This only
works because the function never changes asym; it just uses it for the
comparison in the symbol=? clause. This use of local to avoid passing an
invariant parameter might fall under either case of our rule!

Digression: local names

We could have written is-in? as follows:
;; is-in?: list-of-symbol symbol àà boolean
;; Purpose: return true if the argument symbol is in the list,
;; otherwise, return false
(define (is-in? asym alos)
  (local [(define (is-in-help alos)
            (cond [(empty? alos) false]
                  [else (or (symbol=? (first alos) asym)
                      (is-in-help (rest alos)))]))]

    (is-in-help alos)))

Inside the local, the inner definition of alos “shadows” the outer
definition.  When substituting a value for a variable, you must not replace
shadowed occurrences of the variable!

Example:
   (define is-in? …)

   (is-in? ‘Corky empty)
⇒⇒ (define is-in? …)
   (local [(define (is-in-help alos)
             (cond [(empty? alos) false]
                  [else (or (symbol=? (first alos) ‘Corky)
                      (is-in-help (rest alos)))])]

     (is-in-help empty)))

⇒ (define is-in? …)

(define (is-in-help’ alos)
      (cond [(empty? alos) false]
            [else (or (symbol=? (first alos) ‘Corky)
                      (is-in-help’ (rest alos)))]))]



    (is-in-help’ empty)))

⇒ (define (is-in? …) …)

(define (is-in-help’…) …)

    (cond [(empty? empty) false]
            [else (or (symbol=? (first empty) ‘Corky)
                      (is-in-help’ (rest empty)))])

⇒ (define (is-in? …) …)

    (define (is-in-help’…) …)
    (cond [false false]
          [else (or (symbol=? (first empty) ‘Corky)
                    (is-in-help’ (rest empty)))])

⇒ (define (is-in? …) …)

    (define (is-in-help’…) …)
    false

 A Little Philosophy

Scheme local gives us a glimpse under the covers of how the Scheme
implementation really works.  Every time you define a name, you really
specify where that name may be used.  For example, when you type a name
at DrScheme in the interactions window, it responds with an error unless
there has been a corresponding define for that name in the definitions
window.

> x
reference to undefined identifier: x

But if we type
(define (f x) (+ x 3))

in the definitions window, DrScheme is perfectly happy with our use of x.
Why?  Because the header for the function f  creates a local definition forthe
name x.  This definition of  x only exists inside the parentheses that bound
the definition of f.  These parameter names that we have been using all
semester are actually names with a limited scope–-a limited region in the
code where they can be used.  This idea isn't new to us; in fact, it should be
familiar to us.

local creates such a scope.  The parentheses that enclose the local construct
are the bounds of the scope. One difference between a local "scope" and a
function "scope" is that we can use the define inside a local to specify the



meaning of the name (and not inside a function).  Of course, that means that
we can use anything that can legally appear inside a define within a
local–-including a local.  This creates the possibility for nesting locals.

(define (fee a)
  (local [(define x 2)] (local [(define y 3)] (* a x y))))

and so on…   The evaluation rules make it clear what happens.   What about
(define (fie a)
  (local [(define x 2)]
    (local [(define y 3)]
      (local [(define x 17)]
        (* a x y)))))

What's the value of (fie 1) ?  => 51

The definition of x in the innermost local obscures the definition of x in the
outermost local.  What if x is also a function defined outside all of the locals
–- a place that we will call the top level?   The innermost x hides all
definitions that are "farther out" in the nested set of locals.

To summarize the behavior (or meaning, or semantics) of local
top-level definitions
(local (defs)

expression)

becomes
top-level definitions
[renamed] defs
[renamed] expression

Then the right hand sides of the new defs are evaluated.  Finally  the
expression is evaluated, at which point it becomes

top-level definitions
[renamed] evaluated-defs
[renamed] results



Postlude
Some graduates of COMP 210 complain that they never use the concepts
from COMP 210 in later courses (suggesting they don’t understand object-
oriented design as taught in Comp 212).

Today's lecture is a striking example of the fallacy of that statement.
Scheme's local construct is a pure and distilled form of a principle known
as lexical scoping.  The idea was introduced by logicians (notably Alonzo
Church) in the λ-calculus, a formal framework for studying the concept of
computation.  Later it was incorporated in real programming languages in
Algol 60 (circa 1960).  It is a feature found in most programming languages,
including C/C++ (in degenerate form), Pascal, Modula, ML, Ada, Java, and
(in its own quirky way) in Smalltalk.

Understanding local is critical to your ability to program in those
languages.  The interesting thing about the COMP 210 approach is that
we've explained to you how local works–-not just-how to use it, but how it
works.  The semantics of local.  You now have the tools to answer
complex questions about lexical scoping–-questions that a shallow syntactic
introduction to the idea would not make clear.

Because Scheme has such a simple and comprehensible semantics based on
algebraic simplication, we can explain the semantics of complicated features
such as local in the familiar language of algebra.  The knowledge that you
gained from this model will come back to help you in all of your
programming endeavors, even if you never write another Scheme program
after COMP 210.


