
COMP 210, Spring 2001
Lecture 13: Introducing Local

Reminders:
1. Homework due Wednesday.
2. Exam in DH 3055 (McMurtry Auditorium) during class on Friday, February 23,

2001.

Review
1. We looked at three examples of programs with two “complex” arguments.

They were append , make-points , and merge .  These examples ill ustrate how
our design recipe copes with writing functions where more than one argument
has recursive structure.  These functions can be partitioned into three distinct
groups.

a) The function does not look inside (“ traverse”) one of the arguments, so it
can use the standard “natural recursion” template for the other argument.

b) The function traverses both arguments in “ lock step” .  The inputs to such a
function must be of the same size for the function’s purpose to make sense.
Such a function can be written using the standard template corresponding to
the first “complex” argument--except that each reference to a selector
function for the first argument is paired with a selector function for the
second argument.

c) The function must traverse the recursive structure of both complex
arguments but not in lock-step.  In this case, the function’s purpose does not
stipulate that the arguments must be of the same size.  To write such a
function, we must perform an exhaustive case analysis on the form of both
arguments.  This analysis is best expressed by a table. We implement this
table using a cond  and use recursion only when both arguments have
recursive structure.  If only argument has recursive structure, we may need a
helper function to traverse that particular argument.

Factoring out Common Expressions: A Motivating Example

          ;; max-of-list: list-of-students -> number
;; Purpose: return the largest score attained by a student
in the
;;                argument list
( define (max-of-list) … )

Working with the natural recursion template for list  leads us to an interesting
quandry–-what should it return for the empty list?   What is (max-of-list



empty )  ?  We can use a value such as #i- inf.0   that is smaller than any value
that can appear in the list.  But this trick is unnecessary if the contract stipulates
that the input list is non-empty.

To capture the fact that the list must be non-empty in a contract, we need a data
definition for a form of list that excludes the empty list.  We can define a non-
empty-list as follows:

;; a nel on ( non- empt y- l i st - of - numbers ) i s e i t her
;; – ( cons f  empt y) , w her e f i s a nu mber , or
;; – ( cons f  r ) , w her e f i s a n umber and r i s nel on

This data definition generates the following generic “natural recursion” template

( define  ( f  … a- nelon … )
  ( cond
    [( empty? ( rest a- nelon)) … ( first a- nelon) … ]
    [( cons? ( rest a- nelon)) … ( first a- nelon) … ( f  … (rest a- nelon) … ) … ]))

With this template we can easily write max-of-list  and avoid the issue of an
empty list.

;; max-of-list : nelon -> number
;; Purpose: returns the largest number in the input nelon
( define ( max-of-list  a- nelon)
   ( cond
     [( empty? ( rest a- nelon))  ( first a- nelon)]
     [( cons?  ( rest a- nelon))
      ( cond
        [(> ( first a- nelon)  ( max-of-list  (rest a- nelon)))
         ( first a- nelon)]

   [ else ( max-of-list  (rest a- nelon))])] ))

Reflections on max-of-list

First, its name should really be max-of-nelon, not max-of-list.  Ignoring that, there
is something deeply unsatisfying about this program.  It recurs twice, once in
evaluating the question (> (first a-nelon) (max-of-list (rest a-nelon))), and the
second time if that question evaluates to false.   This is problematic for several
reasons.

�
 We wrote the same expression twice.  If we need to go back and change it, for
example, to instill t ruth in naming, we need to modify it in several places.  We'd
like, aesthetically, to have a single point of control.  [We've worked several
examples in class that fail this criterion.  We just haven't pointed them out.]



�
 If the expression is long and tedious (this one is not), we would rather write it
once and read it once.   [This is a corollary of the first reason, but in COMP
210, it always seems to get listed separately.]

�
 Invoking the function twice on the same argument is wasteful.  [I know, we
keep saying that eff iciency is not an objective in COMP 210, but this is getting
ridiculous.  This program computes the max to figure out whether or not it
should compute the max!]

Consider a list of 6 numbers (list 1 2 3 4 5 6).  Invoking max-of-list on it will
recur twice on a list of five numbers.  Each of those recurs twice on a list of
four numbers.  Each of those recurs…  This leads, quite rapidly, to an
exponential blowup in the amount of work required to find a simple maximum.
For a list of n numbers, it calls max-of-list 2

n
-1 times, or 63 times for  our list of

6 elements. (For a list of 7, it takes 127 calls!) If you ask a first grader to solve
this problem by hand, they typically go down the list once.  Our program should
do better than that.

Warning: New Scheme Syntax
Its been a while since we introduced any new syntax in Scheme.  [Yes, we've
introduced some additional functions, but no new ways of expressing
computations.]  Today, let's look at the scheme construct local that is designed to
help us out of our quandary with max-of-list.

Local takes two complicated arguments–-a list of definitions and an expression.  It
creates a new name space, or context, or scope that contains the definitions, then
evaluates the expression inside that context.  Using local  to rewrite max-of-list,
we get
;; max-of-list : nelon -> number
;; Purpose: returns the largest number in the input nelon
(define (max-of-list a-nelon)
  (cond
    [(empty? (rest a-nelon)) (first a-nelon)]
    [(cons? (rest a-nelon))

(local
  [(define maxrest (max-of-list (rest a-nelon)))]

        (cond [(> (first a-nelon) maxrest) (first a-nelon)]
        [else maxrest])))]))

In fact, we can do even better.
;; max-of-list : nelon -> number
;; Purpose: returns the largest number in the input nelon
(define (max-of-list a-nelon)
  (local



    [ ( def i ne h ead ( f i r st a - nel on) )
     ( def i ne t ai l ( r est a - nel on) ) ]
    ( cond
      [ ( empt y? t ai l ) h ead]
      [ ( cons? t ai l )
       ( l ocal [ ( def i ne m ax- t ai l ( max- of - l i st t ail )) ]
        ( cond [ ( > h ead m ax- t ai l ) h ead]

         [ el se m ax- t ai l ] ) ) ] ) ) )

Notice that the syntax is
( local [( def1 … defn)] expression)

The first argument to local is a list of definitions.  The list is enclosed in
parentheses.  The second argument is an expression.

Local behaves as follows.  It creates a new scope–-think of this as a box in the
world of Scheme objects. The box has walls that are one-way mirrors. Something
inside the box can see through the walls to the outside world, but anything outside
the box has no clue as to what is hidden inside the box.

Inside the box, it evaluates the definitions, creating whatever results those
definitions imply.  After it evaluates the definitions, it then evaluates the
expression, inside the box.  Thus, the expression sees both the contents of the box
and the surrounding context.  The expression evaluates to a result–-a value.
DrScheme replaces the local with that value and discards the box.

Evaluation rules for local

In hand-evaluations, the definitions in a local  are promoted to the top-level.  Each
name (identifier) introduced in a define within a local  is given a fresh name
distinct from all other names in the program (every occurrence of the name in the
entire local  expression is renamed) and each nested definition is li fted to the top
level.

Back to max-of-list

In our example, max-of-list  uses a local to find the largest value in the rest of
a- nelon .  It saves this result as max-tail  (using the define ).  Now, it can
reference max-tail  twice–-once in the test and once in the else  clause.  The
entire program traverses the list once, just as a first grader would.

Notice that it evaluates the local once for each element of the list. Thus, for a list of
n elements, it will create a nest of n boxes.  Each box will hold the largest list
element found in any of the enclosed boxes.  At the outermost box, this produces
the largest element from the rest  of the original nelon , which is compared against
the first  element of the nelon .  The result must be the largest element of this list.



This solution examines the list once.  It does n comparisons.  It creates n boxes.
This is much better than 2

n
-1, isn’ t it.


