COMP 210, Spring 2001
L ecture 13: Introducing L ocal

Reminders:

1. Homework due Wednesday.

2. Exam in DH 3055(McMurtry Auditorium) during classon Friday, February 23,
2001

Review
1. Welooked at three examples of programs with two “complex” arguments.

They were append , make-points , and merge. These examples ill ustrate how

our design redpe pes with writing functions where more than ore agument

has reaursive structure. These functions can be partitioned into threedistinct
groups.

a) Thefunction dees nat lookinside (“traverse”) one of the aguments, so it
can use the standard “natural reaursion” template for the other argument.

b) The function traverses both argumentsin “lock step”. Theinpusto such a
function must be of the same size for the function’s purpose to make sense.
Such a function can be written using the standard template correspondngto
the first “complex” argument--except that ead referenceto a seledor
functionfor the first argument is paired with a seledor function for the
second argument.

¢) The function must traverse the reaursive structure of both complex
arguments but nat in lock-step. In this case, the function's purpose does not
stipulate that the aguments must be of the same size. To write such a
function, we must perform an exhaustive cae analysis onthe form of both
arguments. Thisanalysisis best expressed by atable. We implement this
table usingacond and wse reaursion orly when bah arguments have
reaursive structure. If only argument has reaursive structure, we may need a
helper function to traverse that particular argument.

Factoring out Common Expressions. A Motivating Example

;; max-of-list: list-of-students -> number

;; Purpose: return the largest score attained by a student
in the
" argument list
(define (max-of-list) ...)

Working with the natural reaursion template for list leads us to an interesting
guandry—what shoud it return for the empty list? What is (max-of-list

empty) ? Wecan use avaluesuch as#i- inf.0 that is snaller than any value
that can appea inthelist. But thistrick isunrecessary if the contrad stipulates
that the inpu list is non-empty.

To capture the fad that the list must be nonempty in a contrad, we nead a data
definitionfor aform of list that excludes the empty list. We can define a non-
empty-list as follows:

ma nelon (non-enpty-1list-of-nunbers) iseither

—(consf enpty),w herefi sanu mker,or
—(consf ry,wherefi san unber andri s nelon

This data definition generates the following generic “natural reaursion” template

(define (f ...a-nelon...)

(cond
[(empty? (resta- nelon))...(firsta- nelon) ...]
[(cons? (resta- nelon))...(firsta- nelon) ... (f ...(resta- nelon)...)...])

With this template we can easily write max-of-list and avoid the issue of an
empty list.

;; max-of-list : nelon -> number
;; Purpose: returns the largest number in the input nelon
(define (max-of-list a- nelon)
(cond
[(empty? (resta- nelon)) (first a- nelon)]
[(cons? (resta- nelon))
(cond
[(>(first a- nelon) (max-of-list (rest a- nelon)))
(first a- nelon)]

[else(max-oflist (resta- nelon)))]))

Reflections on max-of-list

First, its name shoud redly be max-of-nelon, nat max-of-list. Ignaring that, there
Is mething deeply unsatisfying abou this program. It reaurs twice, oncein
evaluating the question (> (first a-nelon) (max-of-list (rest a-nelon))), and the
secondtime if that question evaluates to false. Thisis problematic for several
reasons.

B We wrote the same expressontwice If we need to go kadk and change it, for
example, to ingtill truth in naming, we neead to modify it in several places. We'd
like, aestheticdly, to have asingle paint of control. [We've worked several
examplesin classthat fail this criterion. We just haven't pointed them odi.]

B If the expressonislongandtedious (this oneis nat), we would rather write it
once andreal it once [Thisisa wrollary of thefirst reason, but in COMP
210, it always sansto get listed separately.]

B Invoking the functiontwice on the same agument is wasteful. [I know, we
kego saying that efficiency isnot an olgedivein COMP 210 but thisis getting
ridiculous. This program computes the max to figure out whether or not it
shoud compute the max!]

Consider alist of 6 numbers (list1 2 34 5 & Invoking max-of-list onit will
reaur twiceonalist of five numbers. Each of thase reaurstwiceon alist of
four numbers. Eadch of thosereaurs... Thisleals, quite rapidly, to an
exporential blowup in the anourt of work required to find a simple maximum.

For alist of n numbers, it cals max-of-list 2'-1 times, or 63 times for our list of
6 elements. (For alist of 7, it takes 127 call s!) If you ask afirst grader to solve
this problem by hand, they typicdly go davn the list once. Our program shoud
do ketter than that.

Warning: New Scheme Syntax

Its been awhile sincewe introduced any new syntax in Scheme. [Yes, we've
introduced some alditional functions, but no new ways of expressng
computations.] Today, let'slook at the scheme construct | ocal that is designed to
help us out of our quandary with max-of-list.

Locd takes two complicated arguments—al li st of definitions and an expresson. It
credes a new name space, or context, or scope that contains the definitions, then
evaluates the expressoninside that context. Using! ocal to rewrite max-of-list,
we get
7, max-of-list : nelon -> nunber
;; Purpose: returns the largest nunber in the input nelon
(define (mex-of-list a-nelon)
(cond
[(enpty? (rest a-nelon)) (first a-nelon)]
[(cons? (rest a-nelon))
(I ocal
[(define maxrest (max-of-list (rest a-nelon)))]
(cond [(> (first a-nelon) maxrest) (first a-nelon)]
[el se maxrest])))]))

In fad, we can doeven better.

7, max-of-list : nelon -> nunber

; Purpose: returns the largest nunber in the input nelon
(define (mex-of-list a-nelon)

(1 ocal

[(definehead(firsta -nelon))

(definet ail(resta -nelon))]
(cond

[(enpty?t ail)h ead]

[(cons?t ail)

(local[(definemax-tail(max-of-listt ail))]

(cond[(>headmax-tail)h ead]

[el semax-tail]))])))

Noticethat the syntax is
(local [(def1 ... defn)] expression)

The first argument to locd isalist of definitions. Thelist is enclosed in
parentheses. The secondargument is an expresson.

Locd behaves asfollows. It creadesanew scope—think of this asaboxin the
world of Scheme objeds. The box has wall s that are one-way mirrors. Something
inside the box can see throughthe wall s to the outside world, but anything ouside
the box has no clue as to what is hidden inside the box.

Inside the box, it evaluates the definitions, creaing whatever results those
definitionsimply. After it evaluates the definitions, it then evaluates the
expresgon, inside the box. Thus, the expresson sees both the contents of the box
and the surroundng context. The expresson evaluates to aresult—a value.
DrScheme replaces the local with that value and dscards the box.

Evaluation rulesfor local

In hand-evaluations, the definitionsin alocal are promoted to the top-level. Each
name (identifier) introduced in adefine withinalocal isgiven afresh name
distinct from all other names in the program (every occurrence of the namein the
entirelocal expressonis renamed) and ead nested definitionis lifted to the top
level.

Back to max-of-list

In ou example, max-of-list uses alocal to find the largest valuein therest of
a- nelon . It savesthisresult asmax-tail (usingthe define). Now, it can
referencemax-tail twice—oncein thetest and orceintheelse clause. The
entire program traverses the list once, just as afirst grader would.

Noticethat it evaluates the loca oncefor ead element of the list. Thus, for alist of
n elements, it will creae anest of n boxes. Eadh boxwill hold the largest list
element foundin any of the enclosed boxes. At the outermost box, this produces
the largest element from therest of the original nelon , which is compared against
thefirst element of the nelon . The result must be the largest element of this list.

This lution examinesthe list once. It does n comparisons. It credes n boxes.
Thisis much better than 2-1, isn't it.

