COMP 210, Spring 2001
Lecture 9: Moving Beyond Lists

Reminders:
New homework assignment due next Wednesday 2/13/00
Exam will be 2/23/2000, in class—closed-notes, closed-book

Review
p Talked about programs that deal with the natural numbers.

Design M ethodology (Review)
Six stepsin the methodology. See page 128 in the book.

Working with Mixed Data

By now you should be comfortable working with lists and with recursion.
This gives us the foundation we need to start designing programs that
operate over more complex data structures. Today, we'll start by working
with family trees,

Pat Mike Ann Joe
Mary

This family tree depicts three generations of afamily. Arrows run from
child to parent, so Mary's parents are Ann and Joe, Ann's parents are Susan
and Tom, and Pat and Mike are Ann's siblings.

How might we write a data definition that allows us to represent these family
treesin Scheme? (Recall that we used alist to represent recipes.) Thisis
where | think Computer Science gets fun—devising new and effective ways
to represent complex kinds of information.

anfT (for famly-tree) is™elther
— a synbol, or
— (make-FT n mf)

where n is a synbol and f & mare both FT' s
(define-struct FT (nane nother father))

;; Exanpl es
" Mary
(make- FT ' Ann ' Susan ' Ton)

(make-FT 'Mary (nmake-FT 'Ann ' Susan ' Tom ' Joe)
(make- FT ' Pat ' Susan ' Tom)

(make-FT ' M ke ' Susan ' Tom

Designing Programsfor FTs
What would the generic template for thisFT contain?
(define (f ..a-ft .)

(cond [(sSynbol ? a-ft) ...]
[(FN? a-ft)

... (FT-nmot her a-ft) .)
. (f ...(FT-father a-ft) .) ...]1))

Let'swriteaprogrami n-f ami | y? that consumes an FT and asynbol and
produces a boolean that indicates whether or not a person with that nameis
in the family tree.

in-famly?: FT synbol - bool ean

Pur pose: determnes if the synbol a-person is in the
FT a-ft

(define (in-famly? a-ft a-person) .)

Next, we can copy the template over and fill it in.
We can use or to

(define (in-famgy?2 a-ft a-person) check all three

possibilitiesin a
(cond single function
?2 a- 4 -
[(synmbol ? a-ft) (symdg a- person) | cdll, producing the
[(FT? a-ft)
(or boolean or of the

(synbol =7 (FT- nane a-ft) answers.

(in-fam| (FTfather aft) apon))]))

Should we consider writing

all, the function occurs in multi ple places. The'runctlon Would look
something like

(define (conpare-nanes nl n2)
(synbol =? nl1l n2))

Thisfunction looks alittle ridiculous. It smply passesn1 and n2 on to the
built-in function synbol =? and returns the result. Why would we build a
helper function for that?

WEell, with nanme implemented as a symbol, writing conpar e- nanes will
make little sense. If, however, names were, themselves, compound objects
where the equality test required use of selector functions, or application of
multiple equality tests, then abstracting out this function into a helper like
conpar e- names would make sense.

Sometimes, you can see these coming. More often, you will discover the
need for a helper function like conpar e- names as you are writing the code
that needs help. Y ou should still go ahead, create the helper function, and
use it to ssimplify the code. Using a helper function to replace short but
complex sequences of code that are repeated makes the resulting code easier
to read. It also centralizes the knowledge and control into the hel per
function—in the sense that a later change can be made in one place, rather
than in many places. This should, in principle, lead to software that is easier
to understand, to modify, and to maintain.

If al of the tests on atwo-digit year had been isolated into a single helper
function, or even a couple (for =< and >), the Y 2K problem would have been
much easier to fix.

To finish up withi n-f ami | y? on thisversion of family trees, let’s apply
the program to some of our example data.

(in-famly? *Joe ‘Keith)

P (cond
[(synbol ? “Joe) (synbol=? ‘Joe ‘'Keith)]
[(FT? *Joe)

(or (symbol =? (FT-nanme ‘Joe) ‘Keith)
(in-famly? (FT-nother ‘Joe) ‘Keith)
(in-famly? (FT-father ‘Joe) ‘Keith))]))

P (cond
[true (synbol=? *Joe ‘Keith)]
[(FT? *Joe)
(or (symbol =? (FT-nanme ‘Joe) ‘Keith)
(in-famly? (FT-nother ‘Joe) ‘Keith)
(in-famly? (FT-father ‘Joe) ‘Keith))]))

p (synbol =? ‘ Joe ‘' Keith)

b fal se

What about a more complex example?

(in-famly?
(rmake-FT ' Mary (make-FT ' Ann ' Susan ' Ton) ' Joe)
‘ Kei t h)
bp (cond
[(symbol ? (make-FT ' Mary (make-FT ' Ann ' Susan ' Ton) 'Joe))
(synbol =? (make-FT ' Mary (make-FT ‘ Ann ‘ Susan ‘ Ton) ' Joe))
‘Keith)]
[(FT? (make-FT ' Mary (make-FT *Ann * Susan ‘ Tom) ‘Joe))
(or (synbol =?
(FT-nanme (nmake-FT 'Mary (nmake-FT ‘ Ann ‘ Susan ‘ Tom) ‘Joe))
‘ Kei t h)
(in-famly?
(FT- ot her (make-FT 'Mary (make-FT 'Ann ' Susan ' Tom) ' Joe))
‘ Kei t h)
(in-famly?
(FT-father (make-FT 'Mary (make-FT 'Ann ' Susan 'Tom) ' Joe))
‘Keith))])
b (cond
[fal se
(synmbol =? (make-FT ' Mary (make-FT ‘ Ann ‘ Susan ‘ Ton) ' Joe))
‘Keith)]
[(FT? (make-FT ' Mary (make-FT *Ann * Susan ‘ Tom) ‘Joe))
(or (synbol =?
(FT-name (nake-FT 'Mary (make-FT ' Ann ‘ Susan ‘ Tom ‘ Joe))
‘ Kei t h)
(in-famly?
(FT- ot her (make-FT 'Mary (make-FT 'Ann ' Susan ' Tom) ' Joe))
‘ Kei t h)
(in-famly?
(FT-father (make-FT 'Mary (make-FT 'Ann ' Susan ' Tom ' Joe))
‘“Keith))])

b (cond
[(FT? (make-FT ' Mary (make-FT * Ann * Susan ‘ Tom) ‘Joe))
(or (synbol =?
(FT-name (nmake-FT 'Mary (make-FT ‘ Ann ‘ Susan ‘ Tom) *‘Joe))
‘ Kei t h)
(in-famly?
(FT- ot her (make-FT 'Mary (rmake-FT 'Ann ' Susan ' Tom) ' Joe))
‘ Kei t h)
(in-famly?
(FT-father (make-FT 'Mary (make-FT 'Ann ' Susan 'Tom) ' Joe))
‘“Keith))])
.b...(or (synbol =?
(FT-name (nmake-FT 'Mary (nmake-FT ‘ Ann ‘ Susan ‘ Tom ‘Joe))
‘ Kei t h)
(in-famly?
(FT- ot her (make-FT 'Mary (rmake-FT 'Ann ' Susan ' Tom) ' Joe))
‘ Kei t h)
(in-famly?
(FT-father (make-FT 'Mary (make-FT 'Ann ' Susan 'Tom) ' Joe))
‘Keith))

(

n-famly?

(FT- ot her (make-FT 'Mary (make-FT 'Ann ' Susan ' Tom) ' Joe))
‘ Kei t h)

n-famly?

(FT-father (make-FT 'Mary (make-FT 'Ann ' Susan 'Tom) ' Joe))
‘“Keith))])

(

.b...(or

—~

in-famly? (make-FT ' Ann ' Susan ' Tom ‘Keith)

in-famly?

(FT-father (make-FT 'Mary (make-FT 'Ann ' Susan 'Tom) ' Joe))
‘Keith))

—~

b (or
(cond
[(symbol ? (make-FT * Ann * Susan ‘ Tom))
(synmbol =? (make-FT * Ann ‘ Susan ‘ Ton) ‘Keith)]
[(FT? (make-FT “ Ann * Susan ‘' Tom)
(or
(symbol =? (FT-name (nmake-FT ‘ Ann *Susan ‘Tom) ‘Keith)
(in-famly? (FT-nmother (make-FT *Ann ‘ Susan ‘Tom)) *Keith)
(in-famly? (FT-father (make-FT ‘Ann ‘Susan ‘Ton)) ‘Keith))])
(in-famly?
(FT-father (make-FT 'Mary (make-FT 'Ann ' Susan ' Tom) ' Joe))
‘Keith))

.b...(or
(cond
[(FT? (make-FT “ Ann * Susan ‘' Tom)
(or
(symbol =? (FT-name (nmake-FT ‘ Ann *Susan ‘Tom) ‘Keith)
(in-famly? (FT-nmot her (make-FT *Ann ‘ Susan ‘Tom)) ‘Keith)
(in-famly? (FT-father (make-FT ' Ann ‘ Susan ‘ Tom))
‘“Keith))])
(in-famly?
(FT-father (make-FT 'Mary (rmake-FT 'Ann ' Susan 'Tom) ' Joe))
‘Keith))

.b...(or

(or
(symbol =? (FT-name (nmake-FT ‘ Ann * Susan ‘Tom) ‘Keith)
(in-famly? (FT-nmot her (make-FT *Ann ‘ Susan ‘Tom)) *Keith)
(in-famly? (FT-father (make-FT ‘Ann ‘Susan ‘Tom)) ‘Keith))

(in-famly?
(FT-father (make-FT 'Mary (make-FT 'Ann ' Susan 'Tom) ' Joe))
‘Keith))

.b...(or
(or
(in-famly? (FT-nmot her (make-FT *Ann ‘ Susan ‘Tom)) ‘Keith)
(in-famly? (FT-father (make-FT ‘Ann ‘Susan ‘Tonm)) ‘Keith))
(in-famly?
(FT-father (make-FT 'Mary (make-FT 'Ann ' Susan 'Tom) ' Joe))
‘Keith))

b (or

(or
(in-famly? *Susan ‘Keith)
(in-famly? (FT-father (make-FT ‘Ann ‘Susan ‘Tom)) ‘Keith))
(in-famly?
(FT-father (make-FT 'Mary (make-FT 'Ann ' Susan 'Tom) ' Joe))
‘Keith))

.b...(or
(in-famly? (FT-father (make-FT ‘Ann ‘Susan ‘Ton)) ‘Keith))])
(in-famly?
(FT-father (make-FT 'Mary (rmake-FT 'Ann ' Susan ' Tom) ' Joe))
‘Keith))

b (or
(in-famly? * Tom * Keith)
(in-famly?
(FT-father (make-FT 'Mary (make-FT 'Ann ' Susan 'Tom) ' Joe))
‘Keith))
b (in-famly?
(FT-father (make-FT 'Mary (make-FT 'Ann ' Susan 'Tom) ' Joe))
‘Keith))
b (in-famly? 'Joe ‘Keith)
b ... fal se

