
COMP 210, Spring 2001
Lecture 8: Recursion and the Natural Numbers

Reminders:
• Homework due Wednesday in class
• Exam will be 2/23/2001, in class, closed-notes, closed-book

Review
1. Talked about lists with mixed data.

Clarifications
1. Write helper functions that solve the subproblems that arise in

decomposing a problem.  Helper functions are mandated whenever more
than one instance of the subproblem arises in the decomposition.
Examples: the mph-fps conversion in houston-driver-distance the
squaring operation in point3-add.

2. Eliminate all “magic numbers” from your programs by defining variables
(with meaningful names) equal to the magic numbers.  Examples: feet-
per-mile and seconds-per-hour in houston-driver-distance.

3. Despite claims in the book to the contrary, the form of a program
template is not solely dependent on the data definition.  In particular, the
template must identify the primary argument of the program, which
cannot be determined without inspecting the program contract, header,
and purpose.  Example:

; append: list-of-Plane list-of-Plane -> list-of-Plane
; Purpose: given l1 = (a1 … am) and l2 = (b1 … bn), returns
;          the list (a1 … am b1 … bn)
; (define (append lop1 lop2) …)
; Examples
; …
; Data-only Template
; (define (f … lop … )
;   (cond [(empty? lop) … ]
;         [(cons? lop) … (first lop) … (f … (rest lop) … )]))
;
; Correct Template
; (define (append lop1 lop2 )
;   (cond [(empty? lop1) … ]
;         [(cons? lop1) …(first lop1)
;                      … (append (rest lop1) … )]))

(define (append lop1 lop2 )
  (cond [(empty? lop1) lop2]
        [(cons? lop1) (cons (first lop1)
                            (append (rest lop1) lop2)]))



4.  In addition, programs involving numbers like houston-driver-
distance often rely on templates derived from careful data analysis
which goes beyond determining the data definitions (numbers are already
built-in to Scheme).

An Issue of Taste
Programming is part science (the COMP 210 part) and part art (the part built
on taste, experience, and all those other "soft" terms).  Consider our list-of-
nums-and-syms.

We wrote it as
;; a list-of-nums-and-syms is one of
;; – empty, or
;; – (cons s lons)
;;  where s is a symbol and lons is a list-of-nums-and-syms, or
;; – (cons n lons)
;; where n is a number and lons is a list-of-nums-and-syms

We could also have written it as
;; a NumSym is either
;; - a number, or
;; - a symbol

;; a list-of-NumSyms is either
;; - empty, or
;; - (cons f r)
;; where f is a NumSym and r is a list-of-NumSyms

Another example:
;; a list-of-toppings is one of
;; - empty, or
;; - (cons 'cheese a-lot), where a-lot is a list-of-toppings, or
;; - (cons 'pepperoni a-lot), where a-lot is a list-of-toppings,
;; or
;; - (cons 'spinach a-lot), where a-lot is a list-of-toppings.

Versus
;; a topping is one of
;; – 'cheese, or
;; – 'pepperoni, or
;; – 'spinach

;; a list-of-toppings is one of
;; – empty, or
;; – (cons f r)
;;  where f is a topping and r is a list-of-toppings



Which of these data definitions is preferred?  This is a matter of taste,
experience–-in short, what Knuth called "The Art of Computer
Programming."  As you write more programs, larger programs, programs
that are used by other people, and, finally, programs that are modified by
other people, you will develop insight into this issue.  [In fact, programmers
with good taste can disagree over such fundamental issues.]

Natural Numbers
Recently, we’ve been working with lists and writing programs that
recursively traverse various kinds of lists.   Is this the only use for recursion?
(Obviously, the answer is no!) If this were all that programming involved,
we’d be done.  For today’s class, we will work with a restricted set of
numbers that should be familiar to all of us—the “natural numbers.”

What are the natural numbers?  (ask class)

We can define the natural numbers quite simply. The natural numbers form
an infinite set, but one with a specific, rule-based structure.  The smallest
natural number, or the base case (for you fans of mathematical induction), is
zero.  Zero is a natural number—it is the unique smallest element of the set
of natural numbers..  All other natural numbers can be derived from zero by
repeated application of add1.

Natural numbers:
1.) Zero is a natural number
2.) If N is a natural number, then (add1 N) is a natural number.

This data definition is recursive, just as the data definition for a list is
recursive.  This structure should remind you of an induction proof from
some high school math class.     (n is a natural number if n-1 is a natural
number, with zero as a base case.)  Because it has this particular structure,
the set of natural numbers is said to be “recursively enumerable”.  (Fancy
discrete math term)

Notice that the set of natural numbers is totally ordered—that is, for any pair
of distinct natural numbers, s and t, either (< s  t) or else (> s  t).  We will use
this property to talk about why programs over the natural numbers terminate.

Programming with the Natural Numbers
We can use the structure of the natural numbers to organize computations
over natural numbers.  Consider, for example, the mathematical function
factorial.  For a natural number n, (factorial n) is defined as



(factorial n) is the product of the numbers from 1 to n.

Alternatively, (factorial n) = 1 * 2 * 3 * … * n-1 * n.

How would we write the program, (factorial n) ?  We need a template
for natural numbers.  (Of course, some programs over natural numbers will
be simple, flat expressions where the template is serious overkill.  However,
interesting programs over the natural numbers will have a template drawn
from the data definition.
;; factorial: num -> num
;; Purpose: given N, compute N!
(define  (Factorial N)  … )

Next, we develop some test cases:
(factorial 3)  =>  (* 3 (* 2 1)) = 6

(factorial 5) =>   (* 5 (* 4 (* 3 (* 2 1))))

(factorial 1) =>   1

(factorial 0) =>  ???? what does the definition say ????

The product of 1 to 0.  We’ll define it to be 1.

That’s probably enough test examples (determined from looking at the data
definition and the natural language description of the program).  How do we
fill in the ellipsis in the code body?
(define (factorial n)  … )

Not surprisingly, the key lies in the data definition.

;; a natural number is either
;;  – 0, or
;;  – (add1 n), where n is a natural number

This suggests a template with two cases. Back when we wrote a program or
two with real numbers (such as the workout program in Pizza Economics),
we use the mathematical notions of open and closed intervals to model the
cases that occurred in the problem statement.  On the natural numbers, we
have a more restricted structure, so the data definition actually produces a
template.

(define (f a-natnum)
  (cond
    [(= 0 a-natnum) … ]
    [(> 0 a-natnum)  (f (something? a-natnum))… ] ))

Finally, we fill in the expressions controlled by the cases in the cond
expressions.



The first case is easy—for n = 0, the program should return 1.

The second case is more complex—for n > 0, the program should multiply n
times the product from (n-1) to 1.  We cannot write out the code for each
value of n.  We can, however, notice that the product from (n-1) to 1 is
simply (factorial (- n 1)).  This leads to the following code:

(define (factorial n)

  (cond
    [(= 0 n)  1]
    [(< 0 n)  (* n (factorial (sub1 N))]))

Notice that we filled in something with sub1.  Was that insight?  Was it
disciplinary knowledge (based on my special understanding of natural
numbers)?  Or was it analogous to the way we built templates for lists and
compound objects?

With lists, the data definition uses the list constructor, cons, and the
template uses the list selectors first and rest.  With compound objects,
the data defintion uses the constructor, such as make-Plane, and the
template uses the selectors, such as Plane-tail-num and so on.  With
natural numbers, the data definition uses add1.  What undoes an add1?  A
sub1 does.

This is a new use for a recurrence–-to perform a computation rather than to
traverse some concrete structure.  [To the extent that you can call a Scheme
list “concrete.”]  It brings up, in a particularly clear way, an issue that we
have sloughed off to this point.  How do we know that the recursion will halt
– or terminate?  Before you can write any recursive call, you should
convince yourself that the recursion will terminate.  This is one of the most
important properties that a program can have.  (Almost all programs are
designed to terminate. Major exceptions include a clock program and an
operating system.  Unfortunately, all of them that have been written to date
have terminated one or more times.)

Why does factorial terminate?  (ask class)

Sketch of Proof:
Go back to the data definition.  If we invoke factorial with an argument n
that is a natural number, two cases are possible.  Either n is zero, in which
case factorial does not call itself, or n > 0, in which case we know that n
can be derived from zero by repeated application of add1.  In this latter case,
we know that repeated application of sub1 will get us back to zero from any
natural number.  Each time factorial recurs, it subtracts one from n.

Changed name from
template for historical
reasons



Thus, it must, eventually, invoke factorial with an argument of zero,
halting the recursion.

This argument can be formalized as a proof by mathematical induction.

Next step in the methodology is to test the code.

Final Note
We can simplify the Scheme code a little by using the special function

(zero? n)   is equivalent to  (=  0  n)
(define (factorial n)
  (cond
    [(zero? n)  1]
    [else  (* n (factorial (- n 1)))]))

You should use predicates like zero? whenever possible because they
improve the readability of your code.


