COMP 210, FALL 2000
Lecture7: Listswith Mixed Data

Reminders:
Homework due Wednesday

Exam will be Friday, 2/23/2001 in class. The exam will be a closed-
notes, closed-book, fifty minute exam.

Review
Drill on natural recursion on lists.

Working with Mixed Data (Y ou will see more of thisform of datain lab
next week.) Lists can contain more than one kind of data. Consider a
simple example — alist containing both symbols and numbers. The data
definition looks like:

;; alist-of-numand-symis one of
— enpty, or
— (cons S | ons)
where S is a synmbol and lons is a |ist-of-numand-sym or
— (cons N | ons)
Vs where N is a number and lons is a |ist-of-numand-sym
7, [We will use Schene list structures for |ist-of-numand-syni

We did not write any def i ne- st ruct statements because we know we can
use the built-in Scheme list structures to implement mixed lists.

We can use such alist to represent arecipe. Each symbol names an
ingredient. A number indicates how long to cook before adding the next
ingredient. (Thisis not ageneral representation that accommodates all
recipes. For example, it implicitly assumes that all the ingredients get mixed
together and cooked. It is, however, good enough for some dishes, such asa
simple spaghetti sauce.)

;; Exanpl e data
(cons '"garlic (cons 'cumn (cons 5 (cons 'beans (cons 10 enpty)))))

Question: isthisagood choice of data representation for simple recipes? It
Isdebatable. An alternate representation consisting of alist of pairs where
each pair isalist of ingredient names and a cooking time might be better
because it explicitly groups ingredients that are added at the same time. But
such alist representation is homogeneous (not mixed) so it would not
illustrate mixed lists.

On the other hand, the alternate representation suggests that ingredients are
always cooked; a cooking time of O presumably means no cooking is
necessary, but it isartificial. What if two consecutive pairs have cooking
times of 0? Shouldn’t the ingredient lists in those pairs have been merged
into asingle ingredient list? Does this form of redundancy does not occur
in the mixed list representation? It depends. If we alowing cooking times
of Oit does! But we could stipulate that all cooking times must be greater
than 0. In the alternate representation, we do not have this option!

Question Are there any other constraints that we should impose on the
definition of | i st - of - num and- syn?

For the moment, we will not constrain the cooking times in our mixed list
representation to be positive, but we will constrain them to be non-negative!
What does thisimply about our data definition? We need to qualify the
form of numbersin|i st - of - num and- sym

What does the template for a program over | i st - of - num and- symlook like?

(define (f ...a-lons .)
(cond
[(empty? a-1ons) o]
[(synbol ? (first a-lons))
..(first a-lons) ...(f ...(rest a-lons) .) .]
[(nunber? (first a-lons))
..(first a-lons) ...(f ...(rest a-lons) .) .]))

If we want to write a program, such as cooki ng-ti me, we can use the
template:

;; cooking-tine: |ist-of-numand-sym -> nunber
;; Purpose: sumup all the nunbers in the list to determ ne tota
cooking time
(define (cooking-time a-Ilons)
(cond

[(empty? a-1ons) O]

[(symbol ? (first a-lons)) (cook-time (rest a-lons))]

[(number? (first a-lons)) (+ (first a-Ilons)

(cook-time (rest a-lons)))]))

;; ingredient-count: |ist-of-numand-sym -> nunber
;; Purpose: count the nunber of synbols in the |ist
(define (ingredient-count a-lons)
(cond
[(empty? a-1ons) O]
[(symbol ? (first a-lons)) (+ 1 (ingredient-count (rest a-lons))]
[(number? (first a-lons)) (ingredient-count (rest a-lons))]))

; no-cook-recipe? : list-of-numand-sym -> bool ean

;; Purpose: return true if there are no non-zero nunbers in the |ist
(define (no-cook? a-Ilons)
(cond
[(empty? a-1ons) true]
[(symbol ? (first a-lons)) (no-cook? (rest a-lons))]
[(number? (first a-1ons))
(cond [(= 0 (first a-lons)) (no-cook? (rest a-lons))]
[el se false])))

We can simplify this further by replacing the inner cond with asimple
boolean expression

(and (= 0 (first a-lons)) (no-cook? (rest a-lons)))

Thisresults in the following version.

no- cook-recipe? : |ist-of-numand-sym -> bool ean
Purpose: return true if there are no nunbers in the |ist
(define (no-cook? a-Ions)
(cond

[(enpty? a-lons) true]
[(symbol ? (first a-lons)) (no-cook? (rest a-lons))]
[(nunmber? (first a-lons))
(and (= 0 (first a-lons)) (no-cook? (rest a-lons)))]))

The semantics of this program are deceptively subtle. Does Scheme
evaluate the recursive call on no- cook? when the expression

(=0 (first a-lons))

evaluatesto f al se? It does not; otherwise, the program would be wrong!
In effect, the rewriting engine replaces the and expression with the cond
expression that we wrote originally! That is, it rewrites

(and (= 0 (first a-lons)) (no-cook? (rest a-lons)))

as
(cond [(= 0 (first a-lons))) (no-cook? (rest a-lons))]
[el se fal se])

This expression evaluates the first clause. If its conditionist r ue, the cond
expression evaluatesto f al se. Otherwise, it goes on to evaluate the second
condition.

Question: how could we express an “and” operation that always evaluates
both of its arguments?

Notice how similar these two programs are. The structure of the data
determines a major portion of the program'stext. By using our design
recipe, alarge portion of the program is pre-determined—it almost writes
itself.

Question: how would the definition of no- cook? change if we stipulatein
the definition of | i st - of - num and- symthat cooking-times are always
positive?

With the same template, we can write a program that returns alist (as at the
end of last class).

;; get-ingredients : |ist-of-numand-sym-> |ist-of-synbols
;; Purpose: extract the ingredients froma recipe in our |ist
f or mat
(define (get-ingredients a-Ilons)
(cond
[(empty? a-lons) enpty]
[(synbol ? (first a-lons))
(cons (first a-lons) (get-ingredients (rest a-lons)))]
[(nunber? (first a-lons)) (get-ingredients (rest a-lons))]))

