
COMP 210, Spring 2001
Lecture 6: Even More Tricks with Lists

Reminders:
• First Exam: February 23 in class

Review
1. Did more work with lists, introduced Scheme's built-in list construct,

based on cons, first, rest, and cons?
2. Talked some about data definitions and when we need them. At this

point in COMP 210, we want you to write a data definition for each list
construct (even though you use cons et al.) because the data definition
specifies what kind of object is going into the list (list-of-symbol versus
list-of-natnum versus list-of-plane).

3. Talked some about templates. The template relates directly to a data-
definition. We write a separate template for each kind of information
that needs a data definition.

Back to JetSet Airlines

At the end of class, I asked you to solve the following problem. Write a
program that consumes a list-of-planes and produces a list containing all the
planes that are DC-10s. This is my version.
(define (just-dc10s a-lop)

 (cond

 [(empty? a-lop) empty]

 [(cons? a-lop)

(cond [(isdc10? (first a-lop))

 (cons (first a-lop) (just-dc10s (rest a-lop)))]

 [else (just-dc10s (rest a-lop))])]))

;; isdc10? Plane -> boolean

;; Purpose: returns true if p is a DC10, false otherwise

(define (isdc10? p) (symbol=? (Brand-type (Plane-brand p)) 'DC-10))

;; count-dc10s: list-of-plane -> number

;; Purpose: consumes a list-of-plane and returns the number that
;; are DC-10s
(define (count-dc10s a-lop)
 (cond
 [(empty? a-lop) 0]
 [(cons? a-lop)

(cond [(isdc10? (first lop)) (add1 (count-dc10s (rest a-lop)))]
 [else (count-DC-10s (rest a-lop))])]))

An alternative way to write this program is:
;; just-DC-10s: list-of-plane -> number
;; Purpose: consumes a list-of-plane and returns the number that
;; are DC-10s
(define (count-DC-10s a-lop)
 (cond
 [(empty? a-lop) 0]
 [(cons? a-lop)

(add
 (cond

 [(isdc10? (first a-lop)) 1]
 [else 0])
 (count-DC-10s (rest a-lop)))]))

Is this acceptable? This brings us back to the heart of COMP 210. COMP
210 is a course about a data-driven, design methodology for programming in
the small. This program is consistent with our design recipe but it is not as
easy to understand as our original solution. Embedding conditionals in
arithmetic expressions should be avoided unless it significantly shortens the
code. But, in such a case, it is still better to encapsulate the conditional as a
separate “help” function.

A More Complex Variation
Write a program all-the-brand that consumes a list-of-plane and a
symbol and produces a list-of-plane containing all the planes whose brand
matches the symbol. Build on your knowledge from just-dc10s. You can
use the same data-definitions and example data.
;; all-the-brand : list-of-plane symbol -> list-of-plane
;; Purpose: consumes a list-of-plane and produces a list-of-plane
;; that contains all the planes whose Brand-type matches
;; the second argument
(define (all-the-brand a-lop kind) …)

;; Templates
;;
;; for plane
;; (define (is-plane-type a-plane a-symbol)
;; (... (Plane-tailnum a-plane) ...
;; ... (plane-brand a-plane) ...
;; ... (plane-miles a-plane) ...
;; ... (plane-mechanics a-plane) ...))
;;
;;
;;for list-of-planes
;;(define (all-the-brand a-lop a-symbol)

;; (cond
;; [(empty? a-lop) ...]
;; [(cons? a-lop) ... (first a-lop) …
;; (all-the-brand (rest a-lop) a-symbol)]))

;; all-the-brand : list-of-plane symbol -> list-of-plane
;; Purpose: consumes a list-of-plane and produces a list-of-plane
;; that contains all the planes whose type matches the
;; second argument
(define (all-the-brand a-lop kind)
 (cond
 [(empty? a-lop) empty]
 [(cons? a-lop)
 (cond
 [(symbol=? (brand-type (plane-kind (first a-lop))) kind)
 (cons (first a-lop) (all-the-brand (rest a-lop) kind)]
 [else (all-the-brand (rest a-lop) kind)])))

