
COMP 210, Spring 2001
Lecture 5: Programming with Lists, Again

Reminders:
• Homework assignment due next Wednesday
• Read Sections 9 through 11

Review
What have we accomplished, here at the end of the week?
1. Learned to write simple programs based on algebra over real numbers
2. Learned to organize data into aggregate structures–a process we call working with

compound data in COMP 210
3. Learned to aggregrate date in the form of lists–a tool for handling arbitrary amounts

of data.

When we have a problem with a fixed amount of data, we can treat it as compound
data, unless the amount is so large that manipulating the name space becomes a
problem. [As in (define mechanics (repair0 repair1 repair2 … repair100)]

Through all of this, you should be reading the book. It develops a systematic
methodology for building these programs that I can only approximate in class. We have
built up a six-step design recipe for developing these small programs. That recipe should
carry you forward for the rest of COMP 210 and for much of your programming
experience in the future.

Today, we'll go back over lists, writing programs with lists, and look at other
applications of the idea of a list.

Bubba-serves? one more time…
;; a list-of-symbol is either
;; – empty, or
;; – (make-Plist f r)
;; where f is a symbol and r is a list-of-symbol
(define Plist (first rest))

;; General template for processing a list-of-symbols
;; (define (f … a-los …)
;; (cond
;; [(empty? a-los) …]
;; [(Plist? a-los) … (Plist-first a-los)
;; … (f … (Plist-rest a-los) …)]

The final case in the cond has become more complicated. We write down the selector
expressions for each of the pieces of a Plist (and apply them to the parameter a-los).

Finally, we can fill in the entire program:
;; bubba-served? : list-of-symbol -> bool
;; Purpose: return true if Bubba is in the list
(define (bubba-served? a-los)
 (cond
 [(empty? a-los) false]
 [(Plist? a-los)

(cond
 [(symbol=? (Plist-first a-los) 'Bubba) true]
 [else (bubba-served? (Plist-rest a-los))])]))

Notice that the case for a Plist in the cond has two cases. These cases arise from the
two cases in the problem statement (not in the data definition).

• If the mechanic is 'Bubba, we're done (true or false = true)
• If the mechanic is not 'Bubba, we need to look farther down the list (and we know

we can because we are not in the clause of the outer cond for empty). To
accomplish this, we call bubba-served? again to reflect the recursion in the data
definition.

Test on empty, on (list 'Bess 'Mike 'Susan 'Bubba), on (list 'Fred 'Jane
'Felix)

Another example
;; count-services: list-of-symbol -> number
;; Purpose: count number of times this plane has been services
(define (count-services a-los)
 (cond

 [(empty? a-los) 0]
 [(Plist? a-los) (add1 (count-services (Plist-rest a-los)))]))

This example ignores (first a-los) because it doesn't care about the contents of
(first a-los). It simply counts any maintenance record, rather than looking for
specific mechanics.

Plist versus cons
In the preceding examples, we defined our own proper list structure Plist. We also
showed how we could define our own empty list structure Empty and define the variable
empty to be the Empty object (make-Empty), but we elected to use the built-in empty
data object instead. The data definition for list-of-symbol shows that it is either
empty or a Plist, where the second component of a Plist is a list-of-symbols.

This data definition is so fundamental to computation that a version of it called simply
list is built into the Scheme language.
;; a list is either
;; – empty, or
;; – (cons f r)
;; where f is an arbitrary Scheme object and r is a list

cons, first, and rest are built-in Scheme functions. I've always remembered the
name cons as an abbreviation for list constructor.

cons ≡ make-Plist [cons checks its 2nd argument to make
 sure it’s a list]
first ≡ Plist-first
rest ≡ Plist-rest
cons? ≡ Plist?

Henceforth, we will use the built-in data structure cons instead of Plist, eliminating
the need to include a definition of Plist at the beginning of every program that
computes with lists.

Putting Lists to Other Uses
Of course, JetSet Airlines doesn't want a system where they must type the name of each
plane into DrScheme. If they succeed, they could end up with hundreds or thousands of
planes. Thus, they need to organize the set of planes. To do this, we can create a list of
all their planes.

;; a Brand is structure
;; (make-Brand type speed seats service)
;; where type is a symbol and speed, seats, and service are numbers
(define-struct Brand (type speed seats service))

;; a Plane is a structure
;; (make-Plane tail-num kind miles mechanic)
;; where tail-num is a symbol, kind is a brand, miles is a number,
;; and mechanic is a symbol
(define-struct Plane (tail-num kind miles mechanic))

;; a List-of-planes is either
;; – empty, or
;; – (cons f r)
;; where f is a plane and r is a List-of-plane
;; a plane is a
;; (make-Plane tn b mi me)
;; where tail-num is a symbol, b is a Brand, mi is a number, and
;; me is a list of symbols

;; example data
;;
(define brand1 (make-Brand `DC-10 550 282 15000))
(define brand2 (make-Brand `MD-80 505 141 10000))
(define brand3 (make-Brand `ATR-72 300 46 5000))
;; and
(define n1701 (make-Plane `N1701 brand1 0 empty))
(define n3217 (make-Plane ‘N3217 brand3 0 empty))
(define n1211 (make-Plane ‘N1211 brand2 0 empty))
(define n9510 (make-Plane ‘N9510 brand1 0 empty))
;; …
;; Now, the list of planes
;; (define lop
;; (cons n1701
;; (cons n3217

;; (cons n1211
;; (cons n9510 empty)))))
;;

Write a program that consumes a list-of-planes and produces a list
containing all the planes that are DC-10s.

;; just-dc10s: list-of-planes -> list-of-planes
;; Purpose: builds a new list that contains the subset of 'a-lop' that
;; are 'DC-10s
;; (define (just-dc10s a-lop) …)

Design Recipe
Let's review the design recipe for programs that use lists (and other recurseive data
definitions). We'll use bubba-served? as an example, and finish writing the function.

1. Data analysis – determine how many pieces of data describe interesting aspects of a
typical object mentioned in the problem statement; add a data definitions for each
kind ("class") of object in the problem

For bubba-serve? we need a structure that can hold zero or more names
 ;; a list-of-symbols is either
 ;; – empty or
 ;; – (cons f r)
 ;; where f is a symbol and r is a list-of-symbols
 ;;
 ;; Using built-in list constructor, we don't need the define-struct

 ;; examples

empty

(cons 'Bess (cons 'Mike (cons 'Susan (cons 'Bubba empty))))

2. Contract, purpose, header
 ;; bubba-served? : list-of-symbols -> boolean
 ;; Purpose: determine whether 'Bubba is on the "mechanic" list
 ;; (define (bubba-served? a-los) …)

3. Test Cases
 ;; (bubba-served? empty) = false
 ;; (bubba-served? (cons 'Bess
 ;; (cons 'Mike
 ;; (cons 'Susan
 ;; (cons 'Bubba empty))))) = true
 ;; (bubba-served? (cons 'Fred (cons 'Jane (cons 'Felix empty)))) =
 ;; false

4. Template – for any parameter that is a compound object, write down the selector
expressions (access functions?). Template is problem-independent outline for the
code body.

;; (define (f … a-los …)
;; (cond
;; [(empty? a-los) …]
;; [(cons? a-los) … (first a-los) …
;; (f … (rest a-los) …) …]

It is easier to use such a template if we adapt it to the exact form of the function that
we have to write:

;; (define (bubba-served? a-los)
;; (cond
;; [(empty? a-los) …]
;; [(cons? a-los) … (first a-los) …
;; (bubba-served? (rest a-los)) …]

5. Write the body (using the template)
;; bubba-served? : list-of-symbol -> bool
;; Purpose: return true if Bubba is in the list
(define (bubba-served? a-los)
 (cond
 [(empty? a-los) false]
 [(cons? a-los)

 (cond
 [(symbol=? (first a-los) 'Bubba) true]
 [else (bubba-served? (rest a-los))])]))

As you write the body, consider each clause in the cond separately. You don't need
to think about the cons? clause when your are writing the empty? clause.

6. Test the program (using the examples from step 3)

