COMP 210, Spring 2001
L ecture 3A: Moving Beyond Numbers

Reminders:

1. Anyone still looking for a homework partner?

2. Homework 1 due Wednesday, Homework 2 will be available Wednesday
afternoon

3. Read the book. Sections 5-7.

Review
Last class, we:

1. Built another small program in pizza economics

2. Taked about the methodol ogy
a) Contract, purpose, & header
b) Work some examples
c) Develop the body
d) Test the code

Segue

Our initial attempts at programming in Scheme operated over the domain of
numbers. Our goal in COMP 210 is to compute over richer data domains
than just numbers. For example, we might want to assign classes to
classrooms; this would require computing over some domain that included
abstractions for classes (time, department, and size) and for concrete
structures like HZ 212 (number of seats, projection facilities). This clearly
goes beyond numbers.

A common kind of informationisaword. In Scheme, we represent words
by using symbols. A symbol looks like aword, except that it has a single
guote mark on the front. A symbol can contain any string of |etters, except
for ablank. A blank endsthe symbol. The notion of a“letter” isinterpreted
loosely, so that it means letters, numbers, and some kinds of punctuation—
dash islegal, semicolon is not—the definition is alittle idiosyncratic, but
you can always test it directly in Dr. Scheme.

Examples: ‘ conp210 ‘Rice “ Schene
‘ Ryon-102 ‘ Scott - Schaef er * Zung- Hguyen
‘ Cheryl - Hom * Jam e- Raynond ‘ Cor ky- Cartwi ght

What can we do with asymbol in Scheme? Does (+ ‘ Jani e 4) make any
sense? No. * Jani e isSnot a number, so + should not work onit. The only
operation that makes sense on symbols (in Scheme) is comparing them for
equality. The Scheme syntax for this kind of comparisonis

fal se
true

(symbol =? * Corky *Jam e)
(synbol =? ‘' Pizza ' Pizza)

[Notice that we can compare for equality, but not for magnitude.

(> * Corky ‘ Jam e) generates an aborting error message reporting that

‘Jani e iISNot anumber. So does (< ‘ Corky ‘Jamie). Last class, we used
these operators on numbers, numbers are totally ordered. (< x y) hasan
answer, for any numbers x andy. Symbols are not ordered. Hence, we can
only compare them for equality.]

We can use symbolsin a program. For example, consider the program
of fi ce-hours.

;; office-hours: synbol -> synbol
;; Purpose: report the office hours for COW 210 Staff
(define (office-hours namne)
(cond
[(symbol =? name ‘ Corky) ‘M 13:30-to0-15:00]
[(synmbol =? nane ‘ Zung) “ MAF- 11: 00-t 0- 11: 50]
[(symbol =? nanme ‘Jamie) *T-14:30-to0-16:00]
[(symbol =? name ‘ Scott) *Th-12:30-to0-14: 30]
[(symbol =? Name ‘ Cheryl) ‘W16: 00-18:00]))

We can use this capability to implement a small database. We might also

want to know

;; office-nunber: synbol -> synbol
;; Purpose: report the office nunmber of COMP 210 Staff menbers
(define (office-nunber nane)
(cond

[(symbol =? name ‘ Corky) ‘DH 3104]

[(synmbol =? nane ‘ Zung) ‘ DH 3096]

[(symbol =? name ‘Jamie) ‘DH 2064]

[(symbol =? name ‘ Scott) ‘DH 3116]

[(symbol =? Nane ‘ Cheryl) *‘DH 3063]))
We might also want to know their phone numbers.... Hey wait a minute,
thisis getting pretty tedious. This can't be the right way to keep this
information—>building a separate program for each fact related to the staff

member’s name.

All of these functions have (and are going to have) a similar structure.
[Remember: the fundamental thesis of COMP 210 is that the program
structure should reflect the structure of the underlying data. We shouldn’t be
surprised that all the access programs for one set of datalook similar.]

Building M ore Complex Information Structures

Isn’t there a better way to do this? Should the information about a staff
member be scattered across an array of small programs, or should it be
centralized in one place—a place where it can be created, where it can be
changed, where any program that needs it can find the information.

Scheme provides a construct for grouping together a collection of dataitems
that the programmer decides belong together. Thisisthe first principle of
data design: put together those things that naturally belong together! The
Scheme notation for this data definition is

(define-struct SN (info-1 info-2 info-3 ...info-n))

Thisline of code tells DrScheme “1 need a new form of data. | would like to
cal itsNandeachsNhasaninfo-1,aninfo-2,andsoon...” Thedefi ne-
struct construct creates a new kind of compound data and gives it a name
chosen by the programmer. When you write adef i ne- st ruct inthe
DrScheme definitions window and execute it, DrScheme creates a set of
functions for constructing and manipulating your new form of compound
data. Thefirst such functionis

(make-SN info-1 info-2 info-3 ...info-n)

Since executing a define-struct has complex actions, we need to document

each def i ne- st ruct just aswe would document a program. .
Emphasize this as part of

Let's nge,tth.moreeeﬁcrefe. the methodology.

;; A Staff is a structure

7, (make-Staff name of fice-nunber office-hours position)

;; where nane, office-nunber, office-hours and position are synbols
(define-struct Staff (name office-nunber office-hours position))

This data definition creates several functions.

(make- St af f me of fi ce-nunber office-hours position)

ers

define-struct creates these functions for you!

Along with constructors, defi ne-struct creates selectors (or accessors) —
one for each dataitem, or field, in a staff member. It names these programs

St af f - nane Staff-office-hours
St af f - of fi ce- nunber Staff-position

Note that the functions

;; Staff-office-hours: Staff > synbol
;; Purpose: return the office hours of a given 210 staff nenber

; Staff-office-nunber: Staff > synbol

;; Purpose: return the office nunber of a given 210 staff nenber

are similar to our earlier functions of fi ce- hour s and of fi ce- nunber. These
accessor functions do not completely duplicate the earlier functions. The
earlier functions had, embedded inside them, all of the data. Thus, they took
a staff member’s name and returned the appropriate data. In contrast, the
accessor functionstake a st af f structure and return the appropriate data.

We have not addressed the issue of where the table of st af f dataresides or
how to search it to find the st af f structure for a person given the person’s
name. In asubsequent lecture, we will introduce a compound form of data
that can aggregate st af f structures and discuss how to search such an
aggregate object for a particular st af f stucture.

We can use the access functions in other Scheme programs. For example

;; in-charge: Staff -> bool ean
;; Purpose: returns true if a Staff is a teacher, fal se otherw se
(define (in-charge a-staff)
(cond
[(symbol =? (Staff-position a-staff) ‘teacher) true]
[el se false]))

(i n-charge (make-Staff ‘Corky ‘DH3104 * Monday ‘teacher))
(in-charge (make-Staff ‘Scott ‘DH3116 ‘ Tuesday ‘assistant))

true
fal se

Impact of Data Definition on Our Design M ethodology
We must insert the step

Data Analysis and Design

before

Contract, Purpose, and Header

