
;; A player is a structure
;; (make-player name home wins)
;; where name and home are symbols and wins is a number
(define-struct player (name home wins))

;; A ranking is a (list of player) containing 100 elements
;; with the players in ascending rank order

;; find-by-rank : ranking number[<=100] � player
;; Purpose: returns the player with the given rank,
;; starting from rank 1
(define (find-by-rank a-ranking player-num)
 (local [(define (helper alop at-num)

 (cond [(= at-num player-num) (first alop)]
 [else (helper (rest alop) (add1 at-num))]))]

 (helper a-ranking 1)))

(define (find-by-rank a-ranking player-num)
 (cond [(= player-num 1) (first a-ranking)]
 [else (find-by-rank (rest a-ranking) (sub1 player-num))]))

(define (find-by-rank a-ranking player-num)
 (list-ref a-ranking (sub1 player-num)))

;; a ranking is a structure
;; (make-ranking p1 p2 p3 … p100)
;; where the pi are players
(define-struct ranking p1 p2 p3 … p100)

;; find-by-rank : ranking number[<=100] � player
;; Purpose: returns the player with the given rank,
;; starting from rank 1
 (define (find-by-rank a-ranking player-num)
 (cond [(= player-num 1) p1]

[(= player-num 2) p2]
[(= player-num 3) p3]
…
[(= player-num 100) p100]

))

;; A ranking is a vector of 100 players

;; find-by-rank : ranking number[<=100] � player
;; Purpose: returns the player with the given rank,
;; starting from rank 1
(define (find-by-rank a-ranking player-num)
 (vector-ref a-ranking (sub1 player-num)))

;; make-ranking : number � vector
;; Purpose: creates a vector with all components
;; initialized to false
(define (make-ranking size)
 (build-vector size (lambda (i) false)))

;; rank-player! : ranking number player � void
;; Purpose: fill the rank specified by the number argument
;; with the player argument
;; Effect : changes value of ranking in position rank to player
(define (rank-player! a-ranking rank a-player)
 (vector-set! a-ranking rank a-player))

Index starts at 0!

(define (scalar* a-num a-vec)
 (build-vector

(vector-length a-vec)
(lambda (i) (* s (vector-ref a-vec i)))))

(define (scalar-arith a-num a-vec an-op)
 (build-vector

(vector-length a-vec)
(lambda (i) (an-op s (vector-ref a-vec i)))))

(define (vector-arith vec1 vec2 an-op)
 (build-vector
 (vector-length vec1)
 (lambda (i) (an-op (vector-ref vec1 i) (vector-ref vec2 i)))))

