Data Definitions

;; An entry is a structure

., (make-entry Na Nu)

;; where Na is a symbol and Nu is a number
(define-struct entry (name number))

;; address-book : list of entry
;; keep track of the current address book entries
(define address-book empty)

Contracts, Purposes, Headers

;; lookup-number : symbol address-bo@k(number or false)

;; Purpose: returns the phone number associated with the symbol,
> or false if the symbol is not found

(define (lookup-number name) ...)

;; add-to-address-book : symbol numbeitrue
;; Purpose: adds the given name & number to the address book
(define (add-to-address-book name phone) ...)



;; lookup-number : symbeP (number or false)
;; Purpose: returns the phone number associated with the symbol,
> or false if the symbol is not found
(define (lookup-number name)
(local [(define matches
(filter (lambda (an-entry)
(symbol=? name (entry-name an-entry)))
address-book))]
(cond
[(empty? matches) false]
[else (entry-number (first matches))])))

;; add-to-address-book : symbol numbettrue
;; Purpose: adds the given name & number to the address book
(define (add-to-address-book name num)
(begin
(set! address-book
(cons (make-entry name num) address-book))
true))



;; update-address: symbol numbevoid
;; Purpose: given a name and number, updates the phone number
' for that name
(define (update-address name num)
(local [(define updated-book
(map (lambda (entry)
(cond
[(symbol=? (entry-name entry) name)
(make-entry name num)]j
[else entry]))
address-book))]
(set! address-book updated-book)

)



;; update-address-book! : symbol numbBewroid
;; Purpose: given a name and number, updates the phone number
' for that name
;; Effect: changes the phone number stored with the given name
' in address book
(define (update-address-book! name new-num)
(local [(define (helper! a-book)
(cond [(empty? helper) void]
[else
(cond [(symbol=? name
(entry-name (first a-book)))
(set-entry-phone! (first a-book) new-num)]
[else (helper! (rest a-book))D]))]

(helper! address-book)))



