
Data Definitions

;; An entry is a structure

;; (make-entry Na Nu)

;; where Na is a symbol and Nu is a number

(define-struct entry (name number))

;; address-book : list of entry

;; keep track of the current address book entries

(define address-book empty)

Contracts, Purposes, Headers

;; lookup-number : symbol address-book � (number or false)

;; Purpose: returns the phone number associated with the symbol,

;; or false if the symbol is not found

(define (lookup-number name) ...)

;; add-to-address-book : symbol number � true

;; Purpose: adds the given name & number to the address book

(define (add-to-address-book name phone) ...)

;; lookup-number : symbol � (number or false)

;; Purpose: returns the phone number associated with the symbol,

;; or false if the symbol is not found

(define (lookup-number name)

 (local [(define matches

 (filter (lambda (an-entry)

 (symbol=? name (entry-name an-entry)))

 address-book))]

 (cond

 [(empty? matches) false]

 [else (entry-number (first matches))])))

;; add-to-address-book : symbol number � true

;; Purpose: adds the given name & number to the address book

 (define (add-to-address-book name num)

 (begin

 (set! address-book

 (cons (make-entry name num) address-book))

 true))

;; update-address: symbol number � void

;; Purpose: given a name and number, updates the phone number

;; for that name

(define (update-address name num)

 (local [(define updated-book

 (map (lambda (entry)

 (cond

 [(symbol=? (entry-name entry) name)

 (make-entry name num)]

 [else entry]))

 address-book))]

 (set! address-book updated-book)

))

;; update-address-book! : symbol number � void

;; Purpose: given a name and number, updates the phone number

;; for that name

;; Effect: changes the phone number stored with the given name

;; in address book

(define (update-address-book! name new-num)

 (local [(define (helper! a-book)

 (cond [(empty? helper) void]

 [else

 (cond [(symbol=? name

 (entry-name (first a-book)))

 (set-entry-phone! (first a-book) new-num)]

 [else (helper! (rest a-book))])]))]

 (helper! address-book)))

