
COMP 210, FALL 2000
Lecture 28: Converting to Use an Accumulator

Reminders:

1. Missionaries & Cannibals alert: Due 12 April 2000.  One-half the time is gone.  Get
started.

2. Go to lab today.  About half the lab will deal with using abstract functions (to give
you more practice).  The other half of the lab will be devoted to answering questions
about the homework.  Come prepared with questions.  The lab lecturers will answer
any reasonable and insightful question.  They will not give a tutorial on how to write
the lab.  (Don’t ask the question: “how do I write the lab?”)

Review

1. We wrote a program to compute accumulated sick days for JetSet Airlines.  The first
version was structural and inefficient –- it used n(n-1)/2 additions.  The second used
an accumulator to solve the same problem with n-1 additions.

We wrote a program that reverses a list.  Again, the first version was inefficient,
because it involved passing the value returned from one recursive procedure to an
invocation of another recursive procedure.  This led to a COMP 210 rule of thumb:

Consider using an accumulator if the program processes the
return value of a recursive call with another recursive call

Back to Reverse
We could go ahead and write our reverse with an accumulator, but you’ve done that in
lab.  Instead, we will use this well understood program as an example for how to
transform the inefficient solution based on structural recursion into one that uses an
accumulator to improve its efficiency.

You know by now that we want to keep the interface to reverse intact–-both for the sake
of programs that already use reverse and to ensure that we pass the accumulator the
correct initial value.  Thus, you should be able to guess the basic skeleton for reverse:

;; reverse:  list of alpha � list of alpha
;; Purpose:  constructs the reverse of a list of items
(define (reverse  aloa)
   (local [(define (rev aloa accum)

     (cond
[(empty? aloa)  …]
[(cons?  aloa)

… (rev  (rest aloa) …
  (first aloa)  .. accum …) ]))]

(rev  aloa  … )  ))



Notice that the template for rev differs from our classic list template.  We’ve moved the
use of the first element of aloa into the recursive call.  (In the classic list template, it
occurs before the recursive call.)  We’ve also added accum to that call as a parameter.
Why?  We know, from our extensive experience, that rev will probably combine (first
aloa) with accum to form the new accumulator for the recursive call on rev.

We would like to think that we can simply fill in the rest of the body of the program from
the template.  Unfortunately, it’s a little more complex than that.  We need to figure out
what the accumulator holds.  (Otherwise, its hard to figure out how to use it and how to
generate a new accumulator from the old one!)  Before filling in the template, we need to
answer these questions, AND, in true COMP 210 fashion, write down a statement that
documents the contents of the accumulator.  [Without such a statement, it becomes quite
hard to understand a complex, accumulator-based program.]  This definition for the
accumulator gets written (on your homework, on tests, in every program you develop)
immediately above the definition of the function that uses the accumulator.

;; reverse:  list of alpha � list of alpha
;; Purpose:  constructs the reverse of a list of items
(define (reverse  aloa)
   (local [ ;; accum: contains the reversed list of items in aloa that

   ;;              precede alist
   (define (rev alist accum)
     (cond

[(empty? alist)  …]
[(cons?  alist)

… (rev  (rest alist) …
  (first alist)  .. accum …) ]))]

(rev  aloa  … )  ))

The comment should accomplish two things.  It should describe the type of the
accumulator value (so that we can write code) and it should describe the useful property
of the accumulator on which the program relies.  In this case, the comment makes it clear
that accum is a list of items derived from aloa (� it is a list of alpha), and that, on each
call to rev, accum holds the reverse of that part of aloa that has already been processed
and discarded (to form alist).

This property is an invariant that holds before and after each call to rev.

Now, we can fill in the rest of the program.

;; reverse:  list of alpha � list of alpha
;; Purpose:  constructs the reverse of a list of items
(define (reverse  aloa)
   (local [ ;; accum: contains the reversed list of items in aloa that

   ;;              precede alist
   (define (rev alist accum)

Is a list of alpha(!)



     (cond
[(empty? alist)  accum]
[(cons?  alist)

… (rev  (rest alist) …
  (cons (first alist) accum ) ) ]))]

(rev  aloa  empty )  ))
So, what was the process:

1. Write the structural recursion version
2. Write down the template for an accumulator version, preserving the interface and

hiding the accumulator version inside a local.  [This allows us to initialize the
accumulator in a safe and certain fashion.]

3. Decide what the accumulator should hold and write down a comment that
documents the accumulator’s type and states the invariant on which code relies
for correctness.

4. Fill in the details.

Yet Another Example
Consider the program sum that computes the sum of a list of numbers.  Can we write an
accumulator version?  Is there a reason to do so?

;; sum: list-of-number � number
;; Purpose: computes the sum of all numbers in the list
(define (sum alon)
    (cond  [(empty? alon)  0]

   [(cons? alon) (+  (first alon) (sum (rest alon)))]))

Notice that this doesn’t have the case of passing the result of one recursion to another
recursion.  Since this is lecture, it should be a big hint to you that there might be other
reasons to use accumulators.  [Other than “the professor wants us to work another trivial
example.”]  We write down the skeleton:

;; nsum: list-of-number � number
;; Purpose: computes the sum of all the numbers in a list
(define (nsum alon)
   (local [ ;; accum:

   (define (nsum-accum alon accum)
      (cond [(empty? alon)  … ]

    [(cons?   alon)
(sum-accum  (rest alon)

… (first alon) … accum …)]))]
(nsum-accum alon … )))

Then, we fill in the rest of the code and comments



;; nsum: list-of-number � number
;; Purpose: computes the sum of all the numbers in a list
(define (nsum alon)
   (local [ ;; accum: contains the sum of all numbers in the original list

   ;;        that precede the current alon
   (define (nsum-accum alon accum)
      (cond [(empty? alon)  accum ]

    [(cons?   alon)
(sum-accum  (rest alon)

(+ (first alon) accum ) )]))]
(nsum-accum alon 0 )))

Is this example any better (or any different) than the original version?  Both perform
essentially the same amount of work.

(sum (list 2 5 3 7))
= (+ 2 (sum (list 5 3 7)))
= (+ 2 (+ 5 (sum (list 3 7))))
= (+ 2 (+ 5 (+ 3 (sum (list 7)))))
= (+ 2 (+ 5 (+ 3 (+ 7 (sum empty))))))
= (+ 2 (+ 5 (+ 3 (+ 7 0))))
= (+ 2 (+ 5 (+ 3 7)))
= (+ 2 (+ 5 10))
= (+ 2 15)
= 17

(nsum (list 2 5 3 7))
= (nsum-accum (list 2 5 3 7) 0)
= (nsum-accum (list 5 3 7 ) 2)
= (nsum-accum (list 3 7) 7)
= (nsum-accum (list 7) 10)
= (nsum-accum empty 17)
= 17

The evaluations have different shapes (when they are written out).  The structural version
builds up a series of pending additions until it hits empty, then performs all of the
additions on the way back from the call.  After each recursive call finishes, an addition is
performed inside the incarnation of the function that initiated the call.  The accumulator
version simply and directly returns the result of the recursive call, so it doesn’t build up
this context of pending computation.  The hand evaluation is simpler (and easier to
understand).  Does it perform any fewer additions?  NO.

However, this can be more efficient to execute.  Imagine a list of 10,000 numbers, or 10
million numbers.  The space required to hold this pending context can grow quite large,
to the point where it can exhaust the memory resources available in your machine.  The
accumulator version avoids stacking up this pending context, so it side-steps the issue.


