
COMP 210, FALL 2000
Lecture 23: More Generative Recursion

Reminders:
� Homework is due Friday in class. (mea culpa, mea culpa)

Review

1. We built two programs that did not follow our by-now classic template: qsort and
sierpinski. In both cases, the recursion relations in the program arose from the
problem rather than from the data. We introduced the notion that this is “generative
recursion” as opposed to the structural recursion that we’ve seen in the first k weeks
of COMP 210.

Generative Recusion
What are the similarities between QuickSort and Sierpinski? Both programs seem to
violate our template model. They contain a new kind of recursion that does not arise
from the structure of the information that they process. Instead, the recursion occurs as
some innate part of the way that the problem was defined.

• In QuickSort, the algorithm operates by creating (at each step) two smaller lists that
must be sorted and then merging them together with append. Here, the recursion
comes from some insight into sorting.

• In Sierpinski, the algorithm derives the midpoints of the current triangle's sides.
Connecting these midpoints creates four smaller triangles. The program draws the
inner one and recurs on each of the outer ones.

We call this style of recursion “generative recursion,” since the program proceeds by
generating subproblems and solving them recursively. Both QuickSort and Sierpinski
use a divide and concur approach to problem solving. They take the problem, split it into
smaller instances of the same problem & solve those problems.

QuickSort recurred on successively smaller problems until it reached the degenerate case
of a single number to be sorted. (Some of its speed comes from the fact that, at each step,
it pulls the pivot element out of consideration.) Sierpinski, on the other hand, recurred
until it reached some resolution limit imposed by the function too-small?, at which point
it terminated the recursion.

QuickSort solved the original problem by explicitly combining the solutions to the
smaller problems; Sierpinski combined them, but in an implicit way rather than in an
explicit way. The only reason that we run Sierpinski is to execute the various calls to
draw-triangle . When draw-triangle executes, it changes some pixels on the screen to
form lines. The lines are persistent, so the effect is a superposition of all the triangles–-
achieving a visual effect that is analogous to the combination caused by the append in
QuickSort.

What About Our Methodology?
Our design methodology for structural recursion should be engraved in your hearts by
now. The steps are

� Data analysis and design, including examples of the data
� Contract, purpose, & header
� Construct test cases for the program
� Write the template
� Fill in the program’s body
� Test the resulting program (against results of 3)

Do these same steps make sense for generative recursion? Most of them do. We still
need to do data analysis and construct examples–-we cannot develop the program if we
don’t have the data definitions. Every program needs a contract, purpose, and header.

When we generate test cases, we need two kinds of test cases: those that test the limits or
boundaries of the data. [For example, what happens on QuickSort of an empty list?] We
also need examples that demonstrate how the program (or algorithm) operates. These
should be similar to the worked out examples that we did on the board for Quicksort.
These worked out examples help to solidify the operation of the algorithm–-the nuts and
bolts of how it works.

We also need to use a template that is appropriate for generative recursion. The
implementations of QuickSort and Sierpinski have some common elements. Both use a
cond that separates the trivial (or degenerate) case from the recursive case. The recursive
case decomposes the problem into smaller problems and solves them. The trivial case
halts the recursion–-either because the problem is small enough to solve directly, as in
QuickSort, or because there is no point in proceeding further, as in Sierpinski. Picking
out these cases requires problem specific knowledge.

(define (gen-recur-func problem-data)
 (cond
 [(trivial-to-solve? arg1 … argn) (solve arg1 … argn)]
 [else

(combine-solutions
 … (gen-recur-func (generate-problem1 problem-data)) …
 …
 … (gen-recur-func (generate-problemk problem-data)) …
)]))

This template doesn’t give us as much specific guidance as the structural recursion
template, but it does lay the groundwork for writing program that used generative
recursion. In the structural recursion template, we just had to fill in the missing parts. In
this template, you have to replace the various parts of the template with code that
implements that part of the program. Thus, in QuickSort, the function trivial-to-solve?
became the familiar test empty? and the solution for that case was to return empty. In
contrast, the trivial case in Sierpinski actually required some computation to detect–-the
program must compute the distance between two of the points and compare it to some
arbitrary threshold (set on the basis of the appearance of the picture on the screen). To
fulfill the contract, the trivial case returned true.

In general, there are a series of questions that we need to ask about the problem before we
can develop all the code. These questions will often lead to other, less formulaic,
questions. Among the questions we should ask are:

� What is a trivial instance of the problem?
� What is the solution to a trivial instance?
� How do we generate one or more smaller subproblems from the original

problem?
� How many subproblems should we generate?
� Is the solution to the subproblem the solution to the original problem, or do

we need to combine the solutions from several subproblems?
� How do we combine the solutions from subproblems (if that is necessary)?

In the design of programs that use generative recursion, step 4 “write the template” is
much more involved than it is in programs based on structural recursion. (The complex
version of programs that work with multiple complex arguments began to have some
analysis, but it was conceptually simpler than the process for generative recursion.)

� At this point, I made a mistake with the example and the lecture fell apart !!!

� Class was dismissed.

