
COMP 210, FALL 2000
Lecture 21: From Lambda to QuickSort

Reminders:
1. Exam handed out today, due Wednesday at 5pm in my office, DH 2065.  If you

missed class, copies of the exam are available outside my office.  Exam covers
through Lecture 18 (on the web site),the text, through Intermezzo 3 (on local), and the
lab lectures up to lab 5 (on the web site).

2. Homework is due Friday  in class.  (mea culpa, mea culpa)
3. Review session this afternoon DH 1064 or DH 1070

Review

1. We derived the Scheme function filter  and derived an appropriate contract for it.  The
contract was new (to our experience) because it contained a variable alpha rather
than a concrete type.

filter :  (alpha -> boolean)  list-of-alpha  -> list-of-alpha

Since I admonished all of you to go to lab lecture, you should now be familiar with
map, filter , foldl , and foldr .

2. You may not use these abstract functions on the test.  (Reminder on the cover)

3. We talked about the fact that programs are values, so we can use them anywhere that
a value is legal.  We also learned that some parts of Scheme are not values (we call
them keywords or commands) and cannot be used as values.  Someone, after class,
pointed out that we can redefine the built-in functions such as >, <, and +.  Yes, we
can do that.  No, it isn't a particularly good idea.

Introduction

Today's lecture will introduce one new piece of Scheme syntax (lambda) and, time
permitting, move on to a major new idea that dominates the final section of the course –
generative recursion.

Consider the Scheme program double-all

;; double-all:  list-of-number -> list-of-number
;; Purpose:  double all of the numbers in the input list
(define (double-all alon)
    (cond

[(empty? alon) empty]
[(cons?   alon)
  (cons  (* 2 (first alon)) (double-all (rest alon)))]

    ))

After lab, you should recognize that this function can be written more simply using map.



;; double:  number -> number
;; Purpose: consume n, produce 2n
(define (double num)
   (*  2 n))    ;; compiler person would write it as (+ n n)

;; double-all:  list-of-number -> list-of-number
;; Purpose:  double all of the numbers in the input list
 (define (double-all alon)
    (map  double alon))

If we are going to make use of these abstract functions, we will quickly get tired of
making up names for all the little helper functions that we need.  We could, of course,
encapsulate them inside a local

;; double-all:  list-of-number -> list-of-number
;; Purpose:  double all of the numbers in the input list
(define (double-all alon)
    (local [(define (double n) (* 2 n))]
              (map  double alon) ))

This hides double from the world outside double-all and avoids the potential for a name
conflict.  However, there are two problems with writing double-all this way.

1. It forces you to invent a name for double.  (minor hassle)

2. It violates the whole philosophical purpose of using local.  The real justifications for
using a local are:
� To avoid computing some complicated value more than once.
� To make complicated expressions more readable by introducing helper functions

that break the expression up into more tractable parts.
(Notice that avoiding the use of invariant parameters might fall under either case!)

This example fits neither criterion.  The expression is not complicated; in fact, it is about
as simple as a Scheme expression can get.  The expression is not used in many places; it
is used exactly once.  The only reason for introducing double is because we need a
function (number->number) that we can pass to map – this lets us avoid writing a lot of
code by using the abstract function.

To handle this situation, Scheme includes a construct called λ.  Unfortunately, DrScheme
operates under the limited typographic conventions of computer keyboards, so we end up
writing it out as lambda.  Lambda lets us create unnamed programs –- it is a second way
to write out a program (without using define).

(define (double n) (lambda (n)
   (* 2 n))    (* 2 n))



These are equivalent, in the sense that they both create programs that "do" the same thing.
They differ, in the sense that you can use double anywhere that its name can be seen,
while the lambda expression occurs somewhere in the code, is created, is evaluated, and
cannot be used elsewhere because it has no name.

Using lambda, we could rewrite double-all as

(define (double-all alon)
    (map (lambda (n) (* 2 n))  alon) )

Formally, lambda is written

(lambda
   (arg1  arg2 … argn)
   body

   )

where arg1, arg2, …, argn and body are arbitrary Scheme expressions.

To evaluate a lambda expression, DrScheme rewrites it as

(local  [(define (a-unique-new-name  arg1  arg2 … argn)
 body)]

a-unique-new-name)

The body-expression cannot refer to a-unique-new-name because the programmer does
not know how to write it.  The unique name is introduced by the rewriting process, not by
the programmer, so the programmer cannot write a lambda expression that directly calls
itself.   To slightly simplify the explanation, assume the list being sorted contains no
duplicates.

Generative Recusion  (See Section 25 of the text for more detailed treatment)
In the last homework, you built a pair of sorting programs–-one based on the idea of an
insertion sort, and one based on the idea of a merge sort.  Let's look at a third way of
sorting numbers–-an algorithm called QuickSort.

Simple idea, simple algorithm
� Pick a representative element of the list to be sorted and call it the pivot
� Divide the remainder of the list into two lists, one containing elements smaller than

the pivot and one containing elements larger than the pivot.
� Sort those smaller lists (using QuickSort, unless they are trivial lists)
� Create a sorted version of the original list by combining the sorted list of smaller

elements, the pivot element, and the sorted list of larger elements.



Work a couple of examples
(list  11  8  14  7)
(list 1 5 3 6)

How would we develop the program qsort?  Contract, purpose, header, & template …

;; qsort:  list-of-number -> list-of-number
;; Purpose: sort the list of numbers into ascending order
(define (qsort  alon)
    (cond
       [(empty? alon)  …]
       [(cons?    alon)

 … (first alon)  … (qsort  … (rest alon)) …]))

Can we fill in the rest from the English description?

;; qsort:  list-of-number -> list-of-number
;; Purpose: sort the list of numbers into ascending order
(define (qsort  alon)
    (cond
       [(empty? alon)  empty]
       [(cons?    alon)

(local [(define pivot (first alon))]
 … (first alon)  … (qsort  … (rest alon)) …

             ) ] ))

The template is not doing what we need.  We don't need to run qsort on the rest of the
code.  Instead, we need to run it on the list of numbers smaller than the pivot and on the
list of numbers larger than the pivot.  This is not what the template (and the methodology
to date) derives.

We really want something similar to

;; qsort:  list-of-number -> list-of-number
;; Purpose: sort the list of numbers into ascending order
(define (qsort  alon)
    (cond
       [(empty? alon)  empty]
       [(cons?    alon)

(local [(define pivot (first alon))]
          … (qsort (smaller-items (rest alon) pivot))
          … (qsort (larger-items (rest alon) pivot)) …

             ) ] ))

(Assuming the existence of smaller-items and larger-items)

We know that this is filled
in with empty by reading
the contract–-qsort returns a
list-of numbers



Finally, we can fill it in with

;; qsort:  list-of-number -> list-of-number
;; Purpose: sort the list of numbers into ascending order
(define (qsort  alon)
    (cond
       [(empty? alon)  empty]
       [(cons?    alon)

(local [(define pivot (first alon))]
           (append

    (qsort (smaller-items (rest alon) pivot))
    (list pivot)

                (qsort (larger-items (rest alon) pivot)) )
             ) ] ))

(define (smaller-items alon threshold)
    (filter (lambda (n) (<  n threshold))  alon))

(define (larger-items alon threshold)
    (filter (lambda (n) (> n threshold))  alon))

Why didn't the template work?  How did we think of this unusual approach?  Our two
earlier sorting methods came from the data.  Insertion sort sticks one number into a sorted
list of numbers, and follows the template.  The form of the program follows the data.
Merge sort takes two sorted lists and combines them.  It then takes the insightful step of
recognizing that the trivial list–-the one element list, is sorted and that we can break any
list down to a hierarchy of lists ending with trivial lists.  The form of the program follows
the data.

Quicksort is different.  It takes a list and sorts it.

Not all computer science can be generated by templates derived from the data.
Sometimes, it takes a novel thought, an original insight, a clever trick.  Quicksort is one
of those cases.  In Quicksort, we needed insights about the nature of the data and the
nature of the problem we were trying to solve.

The kind of recursive programming that we've done until today is called structural
recursion.  Structural recursion arises naturally from the structure of the information.  In
writing structural recursion, the key is to get the data definitions right.  Remember how
we felt our way around with family trees and with directories.  We learned that it
sometimes takes a process of development and refinement to get the data definitions
right.

Quicksort is an example of another fundamental form of recursion that we will call
generative recursion.  In generative recursion, we generate new instances of a problem
based on some insight about the nature of the problem and (perhaps) the values of the
data.  We solve those new problems by recurring on our process.

Next class, we'll look at another example of generative recursion and then figure out how
to derive a template for generative recursion.

We had to
make pivot
be a list !


