
COMP 210, FALL 2000
Lecture 20: More on Functional Abstraction

Reminders:
1. Next exam is a take-home; handed out 3/17/00, due 3/20/00 (5pm).
2. Exam will cover through Lecture 18 (on the web site). You are responsible for the

text, through Intermezzo 3 (on local) and for the contents of the lab lectures up to lab
6 (on the web site).

3. Homework available this afternoon; it will be 1/2 normal size.
4. Go to the lab lecture this week. Many functions that will be needed in future labs and

lectures and will only be covered in the lab lecture.
5. Should we do a review session? (At most one session)

Review

1. We started to talk about functional abstraction. Built a series of repetitive examples,
intended to show you that they were similar. Showed how to abstract them out.
Ended with an example, keep-rel: (num num -> num) num alon -> alon.

;; keep-rel (num num -> num) num list-of-nums -> list-of-nums
;; Purpose: keep all the numbers in the input list that have the relation given
;; by the function argument to the number argument (whew!)
(define (keep-rel relation num alon)
 (local [(define filter-rel alon) ;; treat relation & num as invariant

 (cond
[(empty? alon) empty]
[(cons? alon)
 (cond

[(relation (first alon) num)
 (cons (first alon) (filter-rel (rest alon)))]
[else (filter-rel (rest alon))])]))

]
(filter-rel alon)))

(define (keep-gt-9 alon)
 (keep-rel > 9 alon))

This shocked several of you. We were able to pass the relational operator as an argument
to a function and it works.

Programs as Values
How can we pass > or < or = as an argument (parameter) to a function such as keep-rel ?
A program is just another value. Recall that we created test values using the define
operation. We used it to create numbers and lists. These became named values in the
world of Scheme values. We use the same syntax and operation to create programs, don't
we? The define operator takes its two parts – the function name and argument list and its
body. The way that DrScheme evaluates the function is a little more complex than
evaluating (define Seventeen 17) because it involves rewriting the parameters with their

values. Of course, Seventeen has no parameters, so the mechanism for handling
functions will work on a defined numerical value as a trivial case.

In general, functions (programs) are values. We can use them anywhere that we use
values. For example, we can build lists of functions, just as we build lists of symbols or
numbers, or objects created with define-struct.

What about > ? Isn't it special? Isn't it a built-in operator?
Yes. It is a built-in operator, but that grants it no special exemptions from the
rules that govern the execution of Scheme programs. The built-in operators are
just functions themselves. Thus, +, *, /, -, <, =, > are all programs that you could
write. So are add1, sub1. BUT, define and define-struct are not implemented that
way; they are only valid in the definitions window–-not in the interactions
window. That gives you a hint that they are not Scheme operators.

Back to Work
So far, all of these examples have looked at an open-ended interval (> 5, < 9). [Of
course, we could use filter-rel to find all of the numbers equal to x, but that's only
interesting if we wanted to count them. (length (keep-rel = 5 somelist)).] What if we
wanted to pull out the numbers between five and nine?

;; keep-bet-5-9: list-of-numbers -> list-of-numbers
;; Purpose: returns a list containing those numbers in the input list
;; whose value is between 5 and 9, inclusive
(define (keep-bet-5-9 alon)
 (cond
 [(empty? alon) empty]
 [(cons? alon)

(cond
 [(and (>= (first alon) 5) (<= (first alon) 9))
 (cons (first alon) (keep-bet-5-9 (rest alon)))]
 [else (keep-bet-5-9 (rest alon))]
)]))

We should really write a helper function to replace the complex test.

;; bet-5-9?: number -> boolean
;; Purpose: test if the argument is between five and nine, inclusive
(define (bet-5-9? anum)
 (and (>= num 5) (<= num 9)))

;; keep-bet-5-9: list-of-numbers -> list-of-numbers
;; Purpose: returns a list containing those numbers in the input list
;; whose value is between 5 and 9, inclusive
(define (keep-bet-5-9 alon)
 (cond
 [(empty? alon) empty]
 [(cons? alon)

(cond
 [(bet-5-9? (first alon))
 (cons (first alon) (keep-bet-5-9 (rest alon)))]
 [else (keep-bet-5-9 (rest alon))]
)]))

You know, by now, where we are going. What if we want to change the range of
numbers? We can change the helper function, but we might be using it somewhere else.
We can write a version that takes an arbitrary range of numbers…

;; bet? : num num num -> boolean
;; Purpose: determines if the third argument lies numerically between the
;; first and second arguments
(define (bet? lower upper anum)
 (and (>= num lower) (<= num upper)))

;; keep-bet : num num list-of-numbers -> list-of-numbers
;; Purpose: keeps all the numbers lying between first and second arguments
(define (keep-bet lower upper alon)
 (local

[(define (filter-bet alon)
 (cond

[(empty? alon) empty]
[(cons? alon)
 (cond

[(bet? lower upper (first alon))
 (cons (first alon) (filter-bet (rest alon)))]
[else (filter-bet (rest alon))])]))]

(filter-bet alon)))

(define (keep-bet-5-9 alon)
 (keep-bet 5 9 alon))

Notice that we used a local to avoid passing around lower and upper at the recursive calls
inside filter-bet and keep-bet.

Abstracting from keep-rel & keep-bet
Look at the definitions of keep-rel and keep-bet. They are reasonably similar. They
differ in their parametters and the first case in the innermost cond–where they decide

whether or not to keep the first element of the input list. The parameter differences boil
down to inputs to that test. The cond clause differs in the implementation of that test.

Can we write one program to capture all of that common code? We start by copying
down all of the information that is common to both programs, leaving an ellipsis in places
where they differ…

(define (keep … alon)
 (local
 [(define (filter alon)

(cond
 [(empty? alon) empty)]
 [(cons? alon)
 (cond

[(… (first alon))
 (cons (first alon) (filter (rest alon)))]

[else (filter (rest alon))])]))]
 (filter alon)))

Let's fill in the gaps. First, look at the gap inside filter . We need a helper function that
takes (first alon) and returns a boolean that tells filter whether or not to keep the number.
Let's make a number for that helper function and make it a parameter. That fills in the
gap in the parameters, too.

(define (keep keep-elt? alon)
 (local
 [(define (filter alon)

(cond
 [(empty? alon) empty)]
 [(cons? alon)
 (cond

[(keep-elt? (first alon))
 (cons (first alon) (filter (rest alon)))]

[else (filter (rest alon))])]))]
 (filter alon)))

To use this, we just need to write the appropriate helper functions. For example

(define (keep-lt-5 alon)
 (local [(define (lt-5? num) (< num 5))]

(keep lt-5? alon)))

(define (keep-bet-5-9 alon)
 (local [(define (bet-5-9? num) (bet? 5 9 num))]

 (keep bet-5-9? alon)))

The function keep is so useful that Scheme provides a built-in version of it. We call the
built-in version of it filter.

The Professor is a Liar
Well, I told you that everything you learned outside of the compilers class is a lie. In
fact, Scheme does provide filter , but it is not as limited as the one we wrote.

What if you wanted to write a function that counted the number of times the symbol 'fee
appeared in a list? You'd like to write it as

;; keep-fee : list-of-symbol -> list-of-symbol
;; Purpose: return the list containing every occurrence of 'fee
(define (keep-fee alos)
 (local [(define (is-fee? asym)(= 'fee asym))]
 (keep is-fee? alos)))

Except, this violates the contract for keep.

Look at the body of keep. Is there anything in the body of keep that depends on the fact
that the argument list contains numbers?

The contract is overly restrictive. In fact, we'd like keep to work on a list of symbol, or a
list of ftn, or a list of mechanic, or a list of plane, or a list of just-about-anything.

To do this, we could rewrite the contract by defining a list of several types of things.
Imagine list-of-just-about-everything where it has a clause for each kind of object that
we want keep to use. Does this solve our problem? NO. In particular, the list-of-just-
about-everything allows one list to contain many different kinds of elements. That makes
the keep-elt function much harder to write correctly. What we need is a notation that
allows us to specify that keep takes a list of something–-where every element of the list is
a something–-but that keep doesn't care what that something is. The precise requirement
for keep is that keep-elt must have a contract of something-> boolean.

To write this down as a Scheme contract, we want to say

;; a list-of-alpha is either
;; – empty, or
;; – (cons f r) where f is an alpha and r is a list of alpha.

Then, we can write the contract for keep as

;; keep : (alpha->boolean) list-of-alpha -> list-of-alpha

This concisely expresses the requirement for keep. The function keep-elt must process
the elements of the argument list and return a boolean. The elements of the input and
output list both have that same type. This is the real contract for filter .

