
COMP 210, FALL 2000
Lecture 19: Functional Abstraction

Reminders:
1. Next exam is a take-home; handed out 3/17/00, due 3/22/00 (5pm in my office).
2. Exam will cover through last lecture. I will post the lecture notes for last lecture this

afternoon, along with a revised explanation of how local actually translates the name
space.

3. This week's homework will be a half-homework.

Review

1. We worked more examples with local. We tried to hammer home, by repetition, the
ideas behind local.

On to Functional Abstraction
Write a simple function that consumes a list of numbers and produces a list of numbers.
The numbers in the returned list should be exactly those numbers in the original list that
are less than 5 (in the same order as the original list).

;; keep-lt-5 : list of numbers -> list of numbers
;; Purpose: keeps all input numbers less than 5
(define (keep-lt-5 alon)
 (cond

[(empty? alon) empty]
[(cons? alon)
 (cond

[(< (first alon) 5)
 (cons (first alon) (keep-lt-5 (rest alon)))]
[else (keep-lt-5 (rest alon))]

)]
))

What about keep-lt-9 ?

;; keep-lt-9 : list of numbers -> list of numbers
;; Purpose: keeps all input numbers less than 9
(define (keep-lt-9 a-lon)
 (cond

[(empty? alon) empty]
[(cons? alon)
 (cond

[(< (first alon) 9)
 (cons (first alon) (keep-lt-9 (rest alon)))]
[else (keep-lt-9 (rest alon))]

)]))

Notice how these two functions have in common. Can we write one function that
captures all this common code (single-point of control) and use it to implement keep-lt-5
and keep-lt-9?

;; keep-lt: number list-of-numbers -> list-of-numbers
;; Purpose: keep all input numbers that are less than the given number
(define (keep-lt num alon)
 (cond
 [(empty? alon) empty)
 [(cons? alon)

 (cond
 [(< (first alon) num)
 (cons (first alon) (keep-lt num (rest alon)))]
 [else (keep-lt num (rest alon))])]))

Notice that num never changes. We could use a local to avoid passing it around in so
many places (and save work) [But, efficiency isn't a concern in the 1st part of Comp 210]

;; keep-lt: number list-of-numbers -> list-of-numbers
;; Purpose: keep all input numbers that are less than the given number
(define (keep-lt num alon)
 (local

[(define (filter-lt alon)
 (cond
 [(empty? alon) empty)

 [(cons? alon)
 (cond
 [(< (first alon) num)
 (cons (first alon) (filter-lt num (rest alon)))]
 [else (filter-lt num (rest alon))])]))

]
(filter-lt alon)

))

Using keep-lt, we can define keep-lt-5 and keep-lt-9

(define (keep-lt-5 alon)
 (keep-lt 5 alon))

(define (keep-lt-9 alon)
 (keep-lt 9 alon))

What if we wanted to write keep-gt-5

;; keep-gt-5 : list of numbers -> list of numbers
;; Purpose: keeps all input numbers greater than 5
(define (keep-gt-5 alon)
 (cond

[(empty? alon) empty]
[(cons? alon)
 (cond

[(> (first alon) 5)
 (cons (first alon) (keep-gt-5 (rest alon)))]
[else (keep-gt-5 (rest alon))]

)]
))

Where do these functions differ? Only in the comparison operator and in the names of
the functions. [The last lecture should have convinced you that the names are malleable.]
How can we reuse the common code here? Previously, we made the upper limit on the
value into a parameter. Now, we need to make the comparison operation itself be a
parameter.

Aside
How do we represent > in the contract? (number number -> number)
We've been writing these contracts for eight weeks now. This should be pretty natural.

Back To Abstracting Out Comparison

;; keep-rel-5 : (num num -> num) list of numbers -> list of numbers
;; Purpose: keeps all input numbers that have relation than 5
(define (keep-rel-5 relation alon)
 (cond

[(empty? alon) empty]
[(cons? alon)
 (cond

[(relation (first alon) 5)
 (cons (first alon) (keep-rel-5 relation (rest alon)))]
[else (keep-relation-5 (rest alon))]

)]
))

and
(define (keep-lt-5 alon)
 (keep-rel-5 < alon))

(define (keep-gt-5 alon)
 (keep-rel-5 > alon))

As before, we can use local in the obvious way to avoid passing relation as a parameter.

;; keep-rel-5 : (num num -> num) list of numbers -> list of numbers
;; Purpose: keeps all input numbers that have relation than 5
(define (keep-rel-5 relation alon)
 (local
 [(define (filter-rel alon)

(cond
 [(empty? alon) empty]
 [(cons? alon)
 (cond

[(relation (first alon) 5)
 (cons (first alon) (filter-rel (rest alon)))]
[else (filter-rel (rest alon))])]))

]
 (filter-rel alon)))

(define (keep-lt-5 alon)
 (keep-rel-5 < alon))

Of course, the next thing we want to do is abstract out the number 5. We should be able
to write a function that takes both the relation and the limit as parameters and returns a
list containing the specified subset of the numbers in the original list.

;; keep-rel (num num -> num) num list-of-nums -> list-of-nums
;; Purpose: keep all the numbers in the input list that have the relation given
;; by the function argument to the number argument (whew!)
(define (keep-rel relation num alon)
 (local [(define filter-rel alon) ;; treat relation & num as invariant

 (cond
[(empty? alon) empty]
[(cons? alon)
 (cond

[(relation (first alon) num)
 (cons (first alon) (filter-rel (rest alon)))]
[else (filter-rel (rest alon))])]))

]
(filter-rel alon)))

(define (keep-gt-9 alon)
 (keep-rel > 9 alon))

Enough for one day.

