
COMP 210, FALL 2000
Lecture 17: Introducing Local

Reminders:
1. Next homework will be available this afternoon, due Wednesday after break

Review
1. We looked at three examples of programs that took two (a pair of?) complicated

arguments. They were append, make-points, and merge. It wasn't clear how our
previous practice of writing templates worked on these more intricate examples.
They divided into three distinct cases.

a) The program does not look inside one of the arguments, so it can use the standard
template for the data definition.

b) The program uses both arguments completely, but they must be of the same
length for the problem instance to make sense. This leads to a simplified template
that looks like the standard template, except that each reference to a selector
function for the first argument is paired with a selector function for the second
argument.

c) The program uses both arguments completely, with no assumptions about their
relative length. In this case, we need to write down a table to compute the
questions that we can ask in the clauses of a cond to differentiate between the
cases.

Each case leads to a template that we can use to solve the problem. However, that
template is a function of the data definition, the contract, and the purpose. This is a
significant departure from our prior practice. This also makes it clear why the book
places template development after writing down the contract, purpose, and header,
rather than after writing down the data definition.

A Simple Program
Consider the task of writing

;; max-of-list : list-of-numbers -> number
;; Purpose: return the largest number in the input argument list
(define (max-of-list) …)

Working with the standard template for list leads us to an interesting quandry–-what
should it return for the empty list? What is (max-of-list empty) ?

To address this quirk of contracts, lists, and arithmetic, the book introduces a slight twist
on the notion of a list–-it introduces the non-empty-list. We can define a non-empty-list
As

;; a nelon (non-empty-list-of-numbers) is either
;; –- (cons f empty), where f is a number, or
;; –- (cons f r), where f is a number and r is nelon

Why do it this way? For the template that it generates:

(define (f a-nelon)
 (cond
 [(empty? (rest a-nelon) … (first a-nelon)]
 [(cons? (rest a-nelon) … (first a-nelon) … (f (rest a-nelon))]
))

With this template we can easily write max-of-list and sidestep the issue of an empty list.
[What we've really done is to restrict the domain of inputs to max-of-list so that it
excludes the troublesome case–-an old and time-honored trick.]

;; max-of-list : nelon -> number
;; Purpose: returns the largest number in the input nelon
(define (max-of-list a-nelon)
 (cond
 [(empty? (rest a-nelon) (first a-nelon)]
 [(cons? (rest a-nelon)
 (cond
 [(> (first a-nelon) (max-of-list (rest a-nelon)))
 (first a-nelon)]

 [else (max-of-list (rest a-nelon))]
)]

))

Reflections on max-of-list
First, its name should really be max-of-nelon, not max-of-list. Ignoring that, there is
something deeply unsatisfying about this program. It recurs twice, once in evaluating the
question (> (first a-nelon) (max-of-list (rest a-nelon))), and the second time if that
question evaluates to false. This is problematic for several reasons.

� We wrote the same expression twice. If we need to go back and change it, for
example, to instill truth in naming, we need to modify it in several places.
We'd like, aesthetically, to have a single point of control. [We've worked
several examples in class that fail this criterion. We just haven't pointed them
out.]

� If the expression is long and tedious (this one is not), we would rather write it
once and read it once. [This is a corollary of the first reason, but in COMP
210, it always seems to get listed separately.]

� Invoking the function twice on the same argument is wasteful. [I know, we
keep saying that efficiency is not an objective in COMP 210, but this is
getting ridiculous. This program computes the max to figure out whether or
not it should compute the max!]
Consider a list of 6 numbers (list 1 2 3 4 5 6). Invoking max-of-list on it will
recur twice on a list of five numbers. Each of those recurs twice on a list of
four numbers. Each of those recurs… This leads, quite rapidly, to an

exponential blowup in the amount of work required to find a simple
maximum. For a list of n numbers, it calls max-of-list 2(n-1) times. If you ask a
first or second grader to solve this problem by hand, they typically go down
the list once. Our program should do better than that.

Warning: New Scheme Syntax
Its been a while since we introduced any new syntax in Scheme. [Yes, we've introduced
some additional functions, but no new ways of expressing computations.] Today, let's
look at the scheme construct local that is designed to help us out of our quandary with
max-of-list.

Local takes two complicated arguments–-a list of definitions and an expression. It
creates a new name space, or context, or scope that contains the definitions, then
evaluates the expression inside that context. Using local to rewrite max-of-list, we get

;; max-of-list : nelon -> number
;; Purpose: returns the largest number in the input nelon
(define (max-of-list a-nelon)
 (cond
 [(empty? (rest a-nelon) (first a-nelon)]
 [(cons? (rest a-nelon)

(local
 ((define maxrest (max-of-list (rest a-nelon))))

 (cond
 [(> (first a-nelon) (maxrest)) (first a-nelon)]

 [else maxrest]))
)]

))

Notice that the syntax is

(local [
 defines
]
expression

)

The first argument to local is a list of definitions. The list is enclosed in parentheses.

If we type max-of-list into the definitions window, click execute, and go to the
interactions window and evaluate (max-of-list (cons 1 empty)), DrScheme complains
bitterly. We need to move to the Intermediate language level.

Once we've done that, we can evaluate (max-of-list (cons 1 empty)). DrScheme
evaluates it to the number 1. If we then type maxrest what happens? DrScheme gives us
an error. Why? Because maxrest exists only inside the new name space created by the
local. When it is evaluating max-of-list, it creates that name space, defines maxrest and

uses it. When it finishes evaluating the local, that name space goes away and the value
maxrest can no longer can be named.

More on this next lecture. The homework will hammer away on locals.

