
COMP 210, FALL 2000
Lecture 14: I'm Tired of Family Trees, Too!

Reminders:
• 1/2 Homework assignment, due Wednesday
• Handed back exam. Summary statistics are on the web.

Review
1. We defined the data structures for a parent-centric family tree and worked our way

through to writing a template. The example that we had, in Scheme, was quite
painful because I mis-parenthesized it.

Here Comes The Definition, Again (apologies to A. Lenox)

;; a parent is a structure
;; (make-parent name year eyes children)
;; where name and eyes are symbols, year is a number, and
;; children is a list-of-children
(define-struct parent (name year eyes children)

;; a list-of-parent is either
;; –- empty, or
;; –- (cons f r)
;; where f is a parent and r is a list-of-parent
;; [Since we used cons, we don't need the define-struct …]

These data-definitions refer to each other. We say that they are mutually dependent or
mutually recursive. [The definition of list-of-children is also self-referential (recursive).]

;; example data
(make-parent 'Tom 1930 'blue

(cons (make-parent 'Ann 1952 'green
 (cons (make-parent 'Mary 1975 'green empty)

 empty)
)

 (cons (make-parent 'Mike 1955 'blue empty)
 empty)

)
)

What about a template for these data definitions?

;; (define (f a-parent …)
;; (parent-name a-parent) …
;; (parent-year a-parent) …
;; (parent-eyes a-parent) …
;; (g (parent-kids a-parent)) …)

;; (define (g a-lop)
;; (cond
;; [(empty? a-lop) …]
;; [(cons? a-lop) … (f (first a-lop)) … (g (rest a-lop)) …]))

The template for a mutually recursive data definition contains one template for each
constituent data definition. To reflect the recursion in the data definition, we have added
the calls to f and g. When the template uses a selector function that refers to an instance
of the other data-definition, we have included the appropriate call to the template for that
data-definition. In this way, the template reflects the coupling of the data-definitions.

Let's develop the program count-members which consumes a parent and returns the
number of people in the family tree rooted at the parent.

;; count-members: parent -> number
;; Purpose: tally the number of people in the tree rooted at parent
(define (count-members a-parent)
 (+1 (count-kids (parent-kids a-parent)))
)

;; count-kids: list-of-parent -> number
;; Purpose: compute how many people are in the family trees rooted at children
(define (count-children a-lop)
 (cond
 [(empty? a-lop) 0]
 [(cons? a-lop)

 (+
 (count-members (first a-lop))
 (count-kids (rest a-lop)))]

))

The template gives us the code.

OPTIONAL PROBLEM (10 minutes)
Write kids-with-blue-eyes : parent -> list-of-parent where every parent on the resulting
list has blue eyes.

Now, write at-least-two-kids, a program that consumes a parent and returns a list of the
names of all parents in the tree with at least two kids.

;; at-least-two-kids: parent -> list-of-symbol
;; Purpose: return a list of all people in the tree with at least 2 kids
(define (at-least-two-kids a-parent)
 (cond
 [(> (num-kids (parent-kids a-parent)) 2)
 (cons (parent-name a-parent)

 (kids-with-two-kids (parent-kids a-parent)))]
 [else (kids-with-two-kids (parent-kids a-parent))]))

;; kids-with-two-kids: list-of-kids -> list-of-symbol
;; Purpose: returns a list of all kids with at least 2 kids
(define (kids-with-two-kids a-lop)
 (cond
 [(empty? a-lop) empty]
 [(cons? a-lop)

 (append (at-least-two-kids (first a-lop))
 (kids-with-two-kids (rest a-lop)))]))

;; num-kids: list-of-children -> num
;; Purpose: counts how many children are in the list
(define (num-kids a-lop)
 (cond
 [(empty? a-lop) 0]
 [else (+ 1 (num-kids (rest a-lop)))]))

Append takes two or more
lists and returns the list that
has the elements of the first,
followed by the elements of
the second, followed by …

This is just length–-a Scheme
built-in function

