COMP 210, FALL 2000
Lecture 14: I'm Tired of Family Trees, Too!

Reminders:
» 1/2 Homework assignment, due Wednesday
* Handed back exam. Summary statistics are on the web.

Review

1. We defined the data structures for a parent-centric family tree and worked our way
through to writing a template. The example that we had, in Scheme, was quite
painful because | mis-parenthesized it.

Here Comes The Definition, Again(apologies to A. Lenox)

;; @ parent is a structure

(make-parent name year eyes children)

;; wheye name and eyes are symbols, year is a number, and
children is a list-of-children

(deflne truct parent fhame year eyes children)

;; a list-of-pareM is either
IT] — € ty’
0 — (cons f 1)

;; Where fis a parent and r is a list-of-parent
;; [Since we used cons, we don't need the define-struct ...]

These data-definitions refer to each other. We say that they are mutually dependent or
mutually recursive. [The definition of list-of-childrendtso self-referential (recursive).]

;; example data
(make-parent "Tom 1930 'blue
(cons (make-parent 'Ann 1952 'green
(cons (make-parent 'Mary 1975 'gresmpty)
empty)
)

(cons (make-parent 'Mike 1955 'bleimpty)
empty)
)



What about a template for these data definitions?

;; (define { a-parent...)

;; (9 (parent- )

\

;; (define @
.» (cond
; [(empty? a-lop) ...
;; [(cons? a-lop) ...f (firsta-lop)) ... ¢ (resta-lop)) ... ]))

The template for a mutually recursive data definition contains one template for each
constituent data definition. To reflect the recursion in the data definition, we have added
the calls to f and g. When the template uses a selector function that refers to an instance
of the other data-definition, we have included the appropriate call to the template for that
data-definition. In this way, the template reflects the coupling of the data-definitions.

Let's develop the prograoount-memberswhich consumes a parent and returns the
number of people in the family tree rooted at the parent.

;; count-members: parent -> number
;; Purpose: tally the number of people in the tree rooted at parent
(define (count-members a-parent)

(+1 (count-kids (parent-kids a-parent) ))

)

;; count-kids: list-of-parent -> number
;; Purpose: compute how many people are in the family trees rooted at children
(define (count-children a-lop)
(cond
[(empty? a-lop) O]
[(cons? a-lop)
(+
(count-members (first a-lop))
(count-kids (rest a-lop)))]

)

The template gives us the code.

OPTIONAL PROBLEM (10 minutes)
Write kids-with-blue-eyes: parent -> list-of-parent where every parent on the resulting
list has blue eyes.



Now, write at-least-two-kids a program that consumes a parent and returns a list of the
names of all parents in the tree with at least two kids.

;; at-least-two-kids: parent -> list-of-symbol
;; Purpose: return a list of all people in the tree with at least 2 kids
(define (at-least-two-kids a-parent)
(cond
[(> (num-kids (parent-kids a-parent)) 2)
(cons (parent-name a-parent)
(kids-with-two-kids (parent-kids a-parent)))]
[else (kids-with-two-kids (parent-kids a-parent))] ))

;; Kids-with-two-kids: list-of-kids -> list-of-symbol
;; Purpose: returns a list of all kids with at least 2 kids
(define (kids-with-two-kids a-lop)
(cond
[(empty? a-lop) empty]
[(cons? a-lop)
(append (at-least-two-kids (first a-lop))

V&ds-with-two-kids (rest a-lop)))]))

) ) ) Append takes two or more
:» num-kids: list-of-children -> num bp

. p ] ts h hild in th lists and returns the list that
» PUrPOSE. counts how many children are in tn€| 1, 5 the elements of the first,
(define (num-kids a-lop)

q followed by the elements of
(Co[](empty’? a-lop) the second, followed by ...

[else (+ 1 (num-kids (Test a-lop)))] ))

built-in function

This is just length—a Scherje




